Abstract:
An apparatus for monitoring changes in a magnetic field using a magneto-resistive device situated in the field includes a first and second input locus coupled with the magneto-resistive device. An amplifier means for amplifying electrical signals has input terminals and output terminals. A first input terminal is coupled with the first input locus with a first capacitor coupled in series between the first input locus and the first input terminal. A second input terminal is coupled with the second input locus with a second capacitor coupled in series between the second input locus and the second input terminal. The apparatus receives a bias current at the first input locus that cooperates with the magneto-resistive element to affect electrical potential at the first input locus. The amplifier device presents at least one output signal at the output terminals indicating changes in the magnetic field.
Abstract:
A magnetic head testing apparatus includes reference information storing means for holding a predetermined reference sampling period and a number of reference samplings, sampling means for sampling reproduced data read a plurality of times from a magnetic medium in the reference sampling period, sampling number acquiring means for acquiring a sampling number of measured data from a reproduced data base on a sampling result, sampling number radio calculating means for calculating a ratio of the sampling number of the measured data and the number of reference samplings, sampling data re-acquiring means for changing the sampling period of the measured data depending on the calculated ratio and re-acquiring the sampling data and a measured data overlap-displaying means for overlap-display of the sampling data re-acquired from the measured data a plurality of times.
Abstract:
A structure is integrated into the design and manufacture of a magnetic head that allows self-generation of magnetic fields. The structure includes a conductor or conductors placed in close proximity to the read portion of a magnetic head and connected to an externally accessible connection. A high frequency signal is passed through the conductor to generate a magnetic field through the read device and simulate, for example, the head crossing magnetic domains on a magnetic memory disk.
Abstract:
A device and method for testing a slider of a head-gimbal assembly during disc drive manufacturing. The device includes a test disc, an actuator arm and a control module. The test disc has a first circumferential area for detecting contact between the slider and the test disc and a second circumferential area for burnishing sliders that contact the first circumferential area as the test disc rotates at or above the predetermined velocity. The head-gimbal assembly is affixed to a support, or flexure, on the actuator arm such that the slider is operable to move between an inner diameter and an outer diameter of the test disc. The control module controls rotation of the test disc and movement of the actuator arm, and thus the slider, relative to the test disc. The control module monitors the slider-disc interface for contact therebetween. If contact is detected, the slider is either burnished or the head-gimbal assembly is discarded altogether.
Abstract:
A sensor device includes the ability to determine part presence and at least one physical characteristic of the part. A drive coil and sense coil are arranged so that a voltage applied across the drive coil causes a response in the sense coil, which is influenced by the presence of the item of interest. In a first mode, a controller determines whether the item is present by determining an amount of coupling between the drive coil and the sense coil, which is indicative of whether a part is present near the sense coil. In a second mode, the controller determines an amount of magnetic flux that is indicative of a thickness of the material. In another mode, constant current applied to the drive coil instigates a voltage across both coils. The amplitude of the sense coil voltage and a phase shift of the sense coil voltage relative to the drive coil voltage provides material thickness information.
Abstract:
A test stand and method for testing a disk of a hard disk drive. The disk is placed onto a spindle motor of the test stand. The test stand also contains a head that is connected to a controller. The controller causes the head to write a reference signal and a test signal onto the disk. The amplitude of the reference signal is then reduced, typically with a DC erase current. The head reads back the test signal from areas of the disk that are heated by a heating element. The reference signal is also read back and used to normalize the test signal. Using a reference signal with a reduced amplitude has been found to produce less scattered data than methods of the prior art.
Abstract:
An apparatus and method for detecting and marking delamination defects on thin film disks are disclosed. The apparatus includes a read/write (R/W) head and a burnishing head mounted on separate arms that access the disk while spinning on the test stand. The controller uses the R/W head to perform an initial magnetic test of selected areas on the disk to establish an initial defect map. The burnish head is then flown over the surface for an extended time to accelerate and open up the latent delamination defects by impacting protruding material. The R/W head is then used to perform a second magnetic test which is compared against the first test to identify the delamination defects which have been developed by the burnishing. The delamination defects are then marked with a magnetic pattern which aids in optically locating the defect during subsequent failure analysis.
Abstract:
Disclosed is a lapping monitor element that is juxtaposed with a magnetic transducer element having a magnetoresistance effect film to determine the lapping position upon lapping the element height of the magnetic transducer element to a predetermined dimension, the lapping monitor element comprising a resistance film to be resistance measured, the resistance film being a metal film of nonmagnetic transition metal or of alloy composed mainly of nonmagnetic transition metal, or a multilayered film where two or more such metal films are laid one upon another, thereby making it possible to extremely stabilize the ELG sensor resistance measured values upon lapping as well as to provide a high accuracy MR height control.
Abstract:
Disclosed are apparatus and method for measuring Hall effect related-values in a semiconductor, such as a mobility, a carrier concentration and a resistivity using a Hall effect. A sample is loaded into an IC socket or a similar target, which is fixed on the inside of a heat insulating material container capable of containing injected liquid nitrogen. The Hall effect related-values are measured using a moving member for moving a pair of permanent magnets to an outside of the heat insulating material container. The measuring equipment has a simple structure, and a measuring operation is simple. A level of an input voltage of a sample is measured depending on a constant current that is supplied by a constant current supplying unit contained in a Hall voltage measurement unit. A measurement error detection unit detects and displays a measurement error of the sample using the level of the measured input voltage. Since the measurement error is detected before measuring the Hall effect, the measurement error can be excluded.
Abstract:
A magnetic flux detector comprises a core member 12 and an armature member 11, and the core member 12 generates a magnetic flux by an exciting coil 13 when the exciting coil receives an excitation current controlled by an excitation current controller 30. The magnetic flux detector further comprises a search coil 14, which is provided in a magnetic path for the magnetic flux, and a magnetic flux calculator 40, which determines the magnitude of the magnetic flux by measuring an electromotive force induced in the search coil 14 by a change in the magnetic flux. The excitation current controller 30 controls the excitation current to increase from zero to a predetermined current value during a first predetermined time period T1 and then to decrease from the predetermined current value to zero during a second predetermined time period T2, and the magnetic flux calculator 40 determines the magnitude of the magnetic flux based on the difference between the increasing electromotive force integral value which is calculated by integrating the electromotive force induced in said search coil 14 during the first predetermined time period T1 and the decreasing electromotive force integral value which is calculated by integrating the electromotive force induced in the search coil 14 during the second predetermined time period T2.