摘要:
A method of detecting a ferroelectric signal from a ferroelectric film and a piezoelectric force microscopy (PFM) apparatus are provided. The method includes following steps. An input waveform signal is applied to the ferroelectric film. An atomic force microscope probe scans over a surface of the ferroelectric film to measure a surface topography of the ferroelectric film. A deflection of the atomic force microscope probe is detected when the input waveform signal is applied to the ferroelectric film to generate a deflection signal. Spectrum data of the ferroelectric film based on the deflection signal is generated. The spectrum data of the ferroelectric film is analyzed to determine whether the spectrum data of the ferroelectric film is a ferroelectric signal or a non-ferroelectric signal.
摘要:
A system and method is provided for of characterizing nanostructured surfaces. A nanostructure sample is placed in an SEM chamber and imaged. The system and method locates one of the nanostructures using images from the SEM imaging, excises a top portion of the nanostructure, places said top portion on a substrate such that the nanostructures are perpendicular to the substrate and a base of the top portion contacts the substrate, performs high energy ion beam assisted deposition of metal at the base to attach the top portion to the substrate, SEM imaging the top portions in the SEM chamber, determining coordinates of the top portions relative to the substrate from the SEM imaging of the top portions, placing the substrate in an AFM chamber, and performing AFM imaging of the top portions using the coordinates previously determined.
摘要:
A method includes: removing at least a part of an oxide formed on a surface of the sample by relatively scanning the surface of the sample in X and Y directions parallel to the surface while bringing a probe into contact with the surface of the sample; detecting a signal by bringing the probe into contact with the surface of the sample from which at least a part of the oxide is removed at a predetermined detection position in the X direction or the Y direction while a bias voltage is applied to the sample; calculating a spreading resistance value based on the signal; and retracting the probe to keep the probe relatively away from the surface in a Z direction perpendicular to the surface while relatively moving the probe to a next detection position to start scanning the sample from the next detection position.
摘要:
An improved mode of AFM imaging (Peak Force Tapping (PFT) Mode) uses force as the feedback variable to reduce tip-sample interaction forces while maintaining scan speeds achievable by all existing AFM operating modes. Sample imaging and mechanical property mapping are achieved with improved resolution and high sample throughput, with the mode workable across varying environments, including gaseous, fluidic and vacuum.
摘要:
A method includes: removing at least a part of an oxide formed on a surface of the sample by relatively scanning the surface of the sample in X and Y directions parallel to the surface while bringing a probe into contact with the surface of the sample; detecting a signal by bringing the probe into contact with the surface of the sample from which at least a part of the oxide is removed at a predetermined detection position in the X direction or the Y direction while a bias voltage is applied to the sample; calculating a spreading resistance value based on the signal; and retracting the probe to keep the probe relatively away from the surface in a Z direction perpendicular to the surface while relatively moving the probe to a next detection position to start scanning the sample from the next detection position.
摘要:
Device and system for characterizing samples using multiple integrated tips scanning probe microscopy. Multiple Integrated Tips (MiT) probes are comprised of two or more monolithically integrated and movable AFM tips positioned to within nm of each other, enabling unprecedented micro to nanoscale probing functionality in vacuum or ambient conditions. The tip structure is combined with capacitive comb structures offering laserless high-resolution electric-in electric-out actuation and sensing capability and novel integration with a Junction Field Effect Transistor for signal amplification and low-noise operation. This “platform-on-a-chip” approach is a paradigm shift relative to current technology based on single tips functionalized using stacks of supporting gear: lasers, nano-positioners and electronics.
摘要:
Using a local-potential-driving probe drives a conductor to a known potential while adjacent lines are grounded through the sample body reduces electrostatic scanning microscope signal from adjacent lines, allows imaging of metal lines deeper in the sample. Providing different potentials locally on different conductive lines using multiple local-potential-driving probes allows different conductors to be highlighted in the same image, for example, by changing the phase of the signal being applied to the different local-potential-driving probes.
摘要:
A scanning probe microscope includes a stage on which a sample is mounted, a probe configured to measure a characteristic of the sample, and a controller configured to move the probe and the stage relative to each other along a scanning trajectory during measurement of the characteristic of the sample. The scanning trajectory includes a plurality of linear segments, wherein each pair of adjacent linear segments form an angle that is 90 degrees or less.
摘要:
A method for determining a value of a local contact potential difference by noncontact atomic force microscopy. For one or more cantilever positions above a surface of a sample: i) determining two distinct voltage values of DC voltage applied between an oscillating cantilever and the sample, and ii) determining, by one or more processors, a value of a local contact potential difference based, at least in part, on the two distinct voltage values that were determined.
摘要:
A method for coupling high-frequency energy, in particular for microwave circuits, to a nanoscale junction involves placing a bias-T outside of the tip and sample circuits of a scanning probe microscope and connecting a portion of a sample of analyzed semi-conductor through an outer shielding layer of coaxial cable so as to complete a circuit with minimal involvement of the sample. The bias-T branches into high and low-frequency circuits, both of which are completed and, at least the high-frequency circuit, does not rely on grounding of implements or other structure to accomplish said completion.