摘要:
Apparatus and method for nano-identification a sample by measuring, with the use of evanescent waves, optical spectra of near-field interaction between the sample and optical nanoantenna oscillating at nano-distance above the sample and discriminating background backscattered radiation not sensitive to such near-field interaction. Discrimination may be effectuated by optical data acquisition at periodically repeated moments of nanoantenna oscillation without knowledge of distance separating nanoantenna and sample. Measurement includes chemical identification of sample on nano-scale, during which absolute value of phase corresponding to near-field radiation representing said interaction is measured directly, without offset. Calibration of apparatus and measurement is provided by performing, prior to sample measurement, a reference measurement of reference sample having known index of refraction. Nano-identification is realized with sub-50 nm resolution and, optionally, in the mid-infrared portion of the spectrum.
摘要:
An atomic force microscope (AFM) and corresponding method to provide low force (sub-20 pN) AFM control and mechanical property measurement is provided. The preferred embodiments employ real-time false deflection correction/discrimination by adaptively modifying the drive ramp to accommodate to deflection artifacts.
摘要:
Apparatus and method for nano-identification a sample by measuring, with the use of evanescent waves, optical spectra of near-field interaction between the sample and optical nanoantenna oscillating at nano-distance above the sample and discriminating background backscattered radiation not sensitive to such near-field interaction. Discrimination may be effectuated by optical data acquisition at periodically repeated moments of nanoantenna oscillation without knowledge of distance separating nanoantenna and sample. Measurement includes chemical identification of sample on nano-scale, during which absolute value of phase corresponding to near-field radiation representing said interaction is measured directly, without offset. Calibration of apparatus and measurement is provided by performing, prior to sample measurement, a reference measurement of reference sample having known index of refraction. Nano-identification is realized with sub-50 nm resolution and, optionally, in the mid-infrared portion of the spectrum.
摘要:
An apparatus and method of performing sample characterization with an AFM and a pulsed IR laser directed at the tip of a probe of the AFM. The laser pulses are synchronized with the oscillatory drive of the AFM and may only interact with the tip/sample on selected cycles of the oscillation. Peak force tapping mode is preferred for AFM operation. Nano-mechanical and nano-spectroscopic measurements can be made with sub-50 nm, and even sub-20 nm, resolution.
摘要:
An apparatus and method of performing photothermal chemical nanoidentification of a sample includes positioning a tip of a probe at a region of interest of the sample, with the tip-sample separation being less than about 10 nm. Then, IR electromagnetic energy having a selected frequency, ω, is directed towards the tip. Using PFT mode AFM operation, absorption of the energy at the region of interest is identified. calorimetry may also be performed with the photothermal PFT system.
摘要:
An apparatus and method of performing photothermal chemical nanoidentification of a sample includes positioning a tip of a probe at a region of interest of the sample, with the tip-sample separation being less than about 10 nm. Then, IR electromagnetic energy having a selected frequency, w, is directed towards the tip. Using PFT mode AFM operation, absorption of the energy at the region of interest is identified. calorimetry may also be performed with the photothermal PFT system.
摘要:
A method of operating a metrology instrument includes generating relative motion between a probe and a sample at a scan frequency using an actuator. The method also includes detecting motion of the actuator using a position sensor that exhibits noise in the detected motion, and controlling the position of the actuator using a feedback loop and a feed forward algorithm. In this embodiment, the controlling step attenuates noise in the actuator position compared to noise exhibited by the position sensor in a bandwidth of about seven times the scan frequency. Scan frequencies up to a third of the first scanner resonance frequency or greater than 300 Hz are possible.
摘要:
An apparatus and method of collecting topography, mechanical property data and electrical property data with an atomic force microscope (AFM) in either a single pass or a dual pass operation. PFT mode is preferably employed thus allowing the use of a wide range of probes, one benefit of which is to enhance the sensitivity of electrical property measurement.
摘要:
A method of compensating for an artifact in data collected using a standard atomic force microscope (AFM) operating in an oscillating mode. The artifact is caused by deflection of the probe not related to actual probe-sample interaction and the method includes compensating for thermal induced bending of the probe of the AFM by measuring a DC component of the measured deflection. The DC component of deflection is identified by calibrating the optical deflection detection apparatus and monitoring movement of the mean deflection, thereby allowing the preferred embodiments to minimize the adverse effect due to the artifact. Notably, plotting the DC deflection profile yields a corresponding temperature profile of the sample.
摘要:
An apparatus and method of automatically determining an operating frequency of a scanning probe microscope such as an atomic force microscope (AFM) is shown. The operating frequency is not selected based on a peak of the amplitude response of the probe when swept over a range of frequencies; rather, the operating frequency is selected using only peak data corresponding to a TIDPS curve.