Abstract:
A nano scale robotic system for single cell DNA sequencing of a strand of DNA positioned on a slide utilizes an atomic force microscope (AFM) having an end effector in the form of a cantilever with a tip. The AFM causes its cantilever tip to scan over the base pairs of the DNA strand. A pair of spaced-apart electrodes at the tip makes contact with opposite sides of the DNA strand and the current between bases of the DNA strand is measured by a current measurement system connected to the electrodes. An artificial intelligence-based data analytic system determines the DNA sequence based on the current from the current measuring system. The AFM tip is guided over the DNA strand by comparing compressed desired intensity local scan images and compressed actual intensity local scan images and using the difference to control the location of the tip.
Abstract:
One embodiment of the present disclosure is related to a method for producing a substrate comprising a plurality of tips suitable to be used in scanning probe microscopy (SPM), wherein as a first step, a substrate is produced or provided comprising a plurality of nano-sized tips, preferably arranged in a regular array and spaced apart by nano-sized interspacings. A mask is applied to this substrate, comprising multiple mask portions, wherein each mask portion covers at least one tip, whereafter the substrate is subjected to an etching process relative to the mask portions. After the removal of the mask portions, the method results in the creation of a substrate comprising multiple pedestals having each at least one nanotip on the upper surface thereof and spaced apart at a distance suitable for performing an SPM measurement of a given type.
Abstract:
A method of manufacturing a MEMS device comprising a main body and a protrusion. To provide a generic method of manufacturing a protrusion with reduced vulnerability, the method includes creating a recess in a wafer substrate, said recess having an upper recess section and a lower recess section. The upper recess section is created using anisotropic etching and the lower recess section is formed using corner lithography followed by directional etching. Finally, a filler material is introduced in the recess and at least part of the wafer substrate material is removed so as to expose the filler material introduced in the recess. Additionally, the method allows for the batch-wise production of protrusions having oblique ends.
Abstract:
A large radius probe for a surface analysis instrument such as an atomic force microscope (AFM). The probe is microfabricated to have a tip with a hemispherical distal end or apex. The radius of the apex is the range of about a micron making the probes particularly useful for nanoindentation analyses. The processes of the preferred embodiments allow such large radius probes to be batch fabricated to facilitate cost and robustness.
Abstract:
A method of providing a MEMS device, such as an AFM probe, having a three-sided pyramidal protrusion is made using a multitude of MEMS method steps. To allow the reliable and speedy manufacture of such a MEMS device having a three-sided protrusion on a massive scale, wherein the protrusion has a relatively small half-cone angle and a single apex, a mold is used. The mold includes a sacrificial layer on top of a base substrate. The method of providing the MEMS device includes: providing an area at the first side of the mold which area comprises a pit with a layer of protrusion material, patterning the layer of protrusion material to the desired shape, and isotropically etching the sacrificial layer of the mold with an isotropic etchant capable of etching the sacrificial layer so as to separate the MEMS device from at least the base substrate of the mold.
Abstract:
A manufacturing method of a probe according to the present embodiment is used to manufacture a probe for a scanning probe microscope. An insulating film is formed on the surface of a probe provided on a base. Metal ions are implanted into the insulating film. An electric field is applied to the insulating film to concentrate the metal ions in the insulating film at a tip of the probe and form a metallic filament in the insulating film.
Abstract:
The present invention relates to nanoprocessing and heterostructuring of silk. It has been shown that few-cycle femtosecond pulses are ideal for controlled nanoprocessing and heterostructuring of silk in air. Two qualitatively different responses, ablation and bulging, were observed for high and low laser fluence, respectively. Using this approach, new classes of silk-based functional topological microstructures and heterostructures which can be optically propelled in air as well as on fluids remotely with good control have been fabricated.
Abstract:
Cantilever probes are formed from a multilayer structure comprising an upper substrate, a lower substrate, an interior layer, a first separation layer, and a second separation layer, wherein the first separation layer is situated between the upper substrate and the interior layer, the second separation layer is situated between the lower substrate and the interior layer, and wherein the first and the second separation layers are differentially etchable with respect to the first and the second substrates, the interior layer. The upper substrate is a first device layer from which a probe tip is formed. The interior layer is a second device layer from which a cantilever arm is formed. The lower substrate is a handle layer from which a handle, or base portion, is formed. Patterning and etching processing of any layer is isolated from the other layers by the separation layers.
Abstract:
An instrument (and corresponding method) performs AFM techniques to characterize properties of a sample of reservoir rock. The AFM instrument is configured to have a probe with a tip realized from reservoir rock that corresponds to the reservoir rock of the sample. The AFM instrument is operated to derive and store data representing adhesion forces between the tip and the sample at one or more scan locations in the presence of a number of different fluids disposed between the tip and the sample. The AFM instrument is further configured to perform computational operations that process the data representing the adhesion forces for a given scan location in order to characterize at least one property of the rock sample at the given scan location. The properties can include total surface energy of the rock sample as well as wettability of the rock sample.
Abstract:
The invention relates to a method for making a 3D nanostructure having a nanosubstructure, comprising the steps of: i) providing a mold comprising at least one sharp concave corner; ii) conformational depositing at least one structural material in the sharp concave corner; iii) isotropically removing structural material; iv) depositing at least one other structural material; v) removing earlier deposited structural material; vi) forming a nanosubstructure; and vii) removing the mold thereby providing the 3D nanostructure having the nanosubstructure.