Abstract:
A read/write arrangement for a contact probe storage arrangement or the like, has a cantilever disposed with a medium which is movable relative to the cantilever; a device associated with one of the cantilever and the medium which is configured to be responsive to changes in electrical field between the medium and the cantilever caused by a change in distance between the medium and the cantilever; a heater disposed on the cantilever for heating the medium and for inducing localized topographical changes which represent bits of data; and a circuit which electrically interconnects both of the device and the heater.
Abstract:
A scanning probe microscopy (SPM) inspection and/or modification system which uses SPM technology and techniques. The system includes various types of microstructured SPM probes for inspection and/or modification of the object. The components of the SPM system include microstructured calibration structures. A probe may be defective because of wear or because of fabrication errors. Various types of reference measurements of the calibration structure are made with the probe or vice versa to calibrate it. The components of the SPM system further include one or more tip machining structures. At these structures, material of the tips of the SPM probes may be machined by abrasively lapping and chemically lapping the material of the tip with the tip machining structures.
Abstract:
A storage device includes a probe, and a substrate comprising a storage medium and heating elements. The heating elements area adapted to heat respective regions of the storage medium to form perturbations in the respective regions of the storage medium, and the probe is adapted to detect the perturbations.
Abstract:
A micro-electro-mechanical systems (MEMS) device is presented that can read very high density magnetic media and very high density CD ROMs. Both the magnetic and optical read heads comprise one or more cold cathode MEMS e-beam cells. The e-beams are deflected according to the data bit being interrogated and the state of that bit is determined by a detector. Large arrays of such cells can simultaneously read large areas of the memory media. Arrays of such MEMs detectors can comprise a plurality of “steerable” e-beam emitters that can be directed to interrogate specific data sites on the magnetic media. Thus, in some cases, the media can remain stationary. Densities of 200 gigabits per square inch or more and read speeds greater than 1000 times faster can be achieved.
Abstract:
A storage device includes a probe, and a substrate comprising a storage medium and heating elements. The heating elements area adapted to heat respective regions of the storage medium to form perturbations in the respective regions of the storage medium, and the probe is adapted to detect the perturbations.
Abstract:
A data storage system that includes a positioning system for positioning the write/read mechanism and the storage medium of the data storage device with respect to each other in first and second predefined directions. The positioning system comprises a positioning apparatus comprising microfabricated first and second positioning assemblies. The positioning system further comprises a controller to position a positionable support structure of the first positioning assembly in a first predefined direction within a range of positioning that is larger, than the range of movement of a moveable support structure of the first positioning assembly by controlling (A) a stationary support structure clamp in clamping and unclamping the positionable structure to and from the support structure, (B) a moveable structure clamp in clamping and unclamping the positionable support structure to and from the moveable support structure, and (C) the movement of the moveable support structure. In one embodiment, one of the write/read mechanism and the storage medium is carried by the positionable support structure so that it is positioned with the first positioning assembly. The other one of the write/read mechanism and the storage medium is positioned with the second positioning assembly. In another embodiment, the positionable support structure carries the second positioning assembly and one of the write/read mechanism and the storage medium is positioned with the second positioning assembly while the other is held stationary. In several embodiments, the read/write mechanism is used:to mechanically write data to and electrically read data from the storage medium. In still another embodiment, the read/write mechanism is used to optically write data to and electrically read data from the storage medium. In yet another embodiment, the read/write mechanism is acoustically aided in electrically writing data to and reading data from the storage medium.
Abstract:
A scanning probe microscopy (SPM) inspection and/or modification system which uses SPM technology and techniques. The system includes various types of microstructured SPM probes for inspection and/or modification of the object. The components of the SPM system include microstructured calibration structures. A probe may be defective because of wear or because of fabrication errors. Various types of reference measurements of the calibration structure are made with the probe or vice versa to calibrate it. The components of the SPM system further include one or more tip machining structures. At these structures, material of the tips of the SPM probes may be machined by abrasively lapping and chemically lapping the material of the tip with the tip machining structures.
Abstract:
A data storage system that includes a positioning system for positioning the write/read mechanism and the storage medium of the data storage device with respect to each other in first and second predefined directions. The positioning system comprises a positioning apparatus comprising microfabricated first and second positioning assemblies. The positioning system further comprises a controller to position a positionable support structure of the first positioning assembly in a first predefined direction within a range of positioning that is larger than the range of movement of a moveable support structure of the first positioning assembly by controlling (A) a stationary support structure clamp in clamping and unclamping the positionable structure to and from the support structure, (B) a moveable structure clamp in clamping and unclamping the positionable support structure to and from the moveable support structure, and (C) the movement of the moveable support structure. In one embodiment, one of the write/read mechanism and the storage medium is carried by the positionable support structure so that it is positioned with the first positioning assembly. The other one of the write/read mechanism and the storage medium is positioned with the second positioning assembly. In another embodiment, the positionable support structure carries the second positioning assembly and one of the write/read mechanism and the storage medium is positioned with the second positioning assembly while the other is held stationary. In several embodiments, the read/write mechanism is used to mechanically write data to and electrically read data from the storage medium. In still another embodiment, the read/write mechanism is used to optically write data to and electrically read data from the storage medium. In yet another embodiment, the read/write mechanism is acoustically aided in electrically writing data to and reading data from the storage medium.
Abstract:
A SPM (scanning probe microscopy) system for modifying an object includes producing measurements indicative of modifications to be made to the object. In accordance with the measurements, one or more SPM probes are manipulated to effect the modifications.
Abstract:
A SPM (scanning probe microscopy) inspection and/or modification system which uses SPM technology and techniques in new and novel ways to inspect and/or modify an object. The system includes various types of microstructured SPM (scanning probe microscopy) probes for inspection and/or modification of the object. The components of the SPM system include microstructured calibration structures. A probe may be defective because of wear or because of fabrication errors. Various types of reference measurements of the calibration structure are made with the probe or vice versa to calibrate it. The components of the SPM system further include one or more tip machining structures. At these structures, material of the tips of the SPM probes may be machined by abrasively lapping and chemically lapping the material of the tip with the tip machining structures.