Abstract:
The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG), or optionally MEG and one or more co-product, from one or more hexose feedstock. The present application also relates to recombinant microorganisms useful in the biosynthesis of glycolic acid (GA), or optionally GA and one or more co-product, from one or more hexose feedstock. The present application relates to recombinant microorganisms useful in the biosynthesis of xylitol, or optionally xylitol and one or more co-product, from one or more hexose feedstock. Also provided are methods of producing MEG (or GA or xylitol), or optionally MEG (or GA or xylitol) and one or more co-product, from one or more hexose feedstock using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or the products MEG (or GA or xylitol), or optionally MEG (or GA or xylitol) and one or more co-product.
Abstract:
The present invention is directed towards methods for treating non-alcoholic fatty liver disease (NAFLD) in a patient and determining prognosis of NAFLD in a patient.
Abstract:
The present disclosure relates, in some aspects, to cell-free methods and systems for large-scale conversion of methane to isobutanol, comprising combining, in a bioreactor at elevated pressure, methane, oxygen, and cell lysates containing methane monooxygenase, methanol dehydrogenase, and enzymes that catalyze the conversion of formaldehyde to isobutanol, to form a cell-free reaction mixture, and incubating under suitable conditions the cell-free reaction to convert methane to isobutanol.
Abstract:
A plurality of primer sets are designed based on a region where conservation at the amino acid level is observed among various microorganisms for known gene sequences corresponding to a gene coding for an enzyme of the L-amino acid biosynthetic pathway derived from Corynebacterium thermoaminogenes, preferably an enzyme that functions at a higher temperature compared with that of Corynebacterium glutamicum. PCR is performed by using the primers and chromosomal DNA of Corynebacterium thermoaminogenes as a template. The primers with which an amplification fragment has been obtained are used as primers for screening to select a clone containing a target DNA fragment from a plasmid library of chromosomal DNA of Corynebacterium thermoaminogenes.
Abstract:
Disclosed are genetically engineered microbial cells for the production of oligosaccharides comprising a galactose-β1,4-glucose moiety at their reducing end, wherein said microbial cells are able to produce said oligosaccharides in the absence of exogenously added lactose, and a method of producing said oligosaccharides using said microbial cells.
Abstract:
A microorganism which is genetically modified so that it produces a first essential biomass precursor by metabolizing CO2 using a recombinant carbon fixation enzyme is disclosed. The microorganism produces a second biomass precursor by metabolizing an organic carbon source and not by metabolizing CO2. The microorganism does not use the organic carbon source for producing the first essential biomass precursor.
Abstract:
Substance productivity is improved by introducing a metabolic pathway for synthesis of acetyl-CoA or acetic acid from glucose-6-phosphate into yeast. Acetic acid productivity, acetyl-CoA productivity, and productivity of a substance made from acetyl-CoA-derived are improved by attenuating genes involved in the glycolytic system of yeast and introducing a phosphoketolase gene into the yeast.
Abstract:
A plurality of primer sets are designed based on a region where conservation at the amino acid level is observed among various microorganisms for known gene sequences corresponding to a gene coding for an enzyme of the L-amino acid biosynthetic pathway derived from Corynebacterium thermoaminogenes, preferably an enzyme that functions at a higher temperature compared with that of Corynebacterium glutamicum. PCR is performed by using the primers and chromosomal DNA of Corynebacterium thermoaminogenes as a template. The primers with which an amplification fragment has been obtained are used as primers for screening to select a clone containing a target DNA fragment from a plasmid library of chromosomal DNA of Corynebacterium thermoaminogenes.
Abstract:
A plurality of primer sets are designed based on a region where conservation at the amino acid level is observed among various microorganisms for known gene sequences corresponding to a gene coding for an enzyme of the L-amino acid biosynthetic pathway derived from Corynebacterium thermoaminogenes, preferably an enzyme that functions at a higher temperature compared with that of Corynebacterium glutamicum. PCR is performed by using the primers and chromosomal DNA of Corynebacterium thermoaminogenes as a template. The primers with which an amplification fragment has been obtained are used as primers for screening to select a clone containing a target DNA fragment from a plasmid library of chromosomal DNA of Corynebacterium thermoaminogenes.
Abstract:
The present invention relates to a method for producing fucosylated oligosaccharides by using a recombinant prokaryotic host cell that is cultivated on a gluconeogenic substrate, as well as to the host cell and its use. The host cell is genetically modified in that the activity of a fructose-6-phosphate converting enzyme is abolished or lowered, and the transport of the produced fucosylated oligosaccharide through the cell membrane is facilitated by an exogenous transport protein.