摘要:
The present disclosure generally relates to modified microorganisms comprising an optimized system for oligosaccharide utilization comprising one or more polynucleotides coding for one or more energy independent oligosaccharide transporters for transporting an oligosaccharide into the microorganism, one or more polynucleotides coding for enzymes that catalyze the conversion of the oligosaccharide into at least one phosphorylated saccharide, and one or more polynucleotides coding for enzymes that catalyze the conversion of the phosphorylated saccharide into an isomer of the phosphorylated saccharide that is utilized in one or more enzymatic pathways in the microorganism for the production of an organic molecule such as acetic acid, acrylic acid, 3-hydroxypropionic acid, lactic acid, etc. The present disclosure also generally relates to methods of using the optimized system for oligosaccharide utilization.
摘要:
The present invention relates to genetically engineered organisms, especially microorganisms such as bacteria and yeasts, for the production of added value bio-products such as specialty saccharide, activated saccharide, nucleoside, glycoside, glycolipid or glycoprotein. More specifically, the present invention relates to host cells that are metabolically engineered so that they can produce said valuable specialty products in large quantities and at a high rate by bypassing classical technical problems that occur in biocatalytical or fermentative production processes.
摘要:
Disclosed herein, are compositions and methods useful in expressing a functional PGM1 protein in a subject by administration of a recombinant adeno-associated virus vector containing a transgene encoding PGM1. Also disclosed herein are methods for treating a PGM1 gene deficiency in a subject in need thereof.
摘要:
The present invention relates to genetically engineered organisms, especially microorganisms such as bacteria and yeasts, for the production of added value bio-products such as specialty saccharide, activated saccharide, nucleoside, glycoside, glycolipid or glycoprotein. More specifically, the present invention relates to host cells that are metabolically engineered so that they can produce said valuable specialty products in large quantities and at a high rate by bypassing classical technical problems that occur in biocatalytical or fermentative production processes.
摘要:
A method for preparing glucosamine includes the steps of converting fructose-6-phosphate (F6P) and an ammonium salt to glucosamine-6-phosphate (GlcN6P) under the catalysis of glucosamine-6-phosphate deaminase (EC 3.5.99.6, GlmD); and producing glucosamine (GlcN) by the dephosphorylation of GlcN6P under the catalysis of an enzyme capable of catalyzing the dephosphorylation. Such a method can be used to prepare glucosamine by in vitro enzymatic biosystem.
摘要:
The invention relates to immobilized enzyme compositions for the preparation of a hexose. Hexoses include, for example, tagatose, psicose, fructose, allose, mannose, galactose, altrose, talose, sorbose, gulose, idose, and inositol. The invention also relates to an enzymatic process for preparing a hexose from a saccharide by contacting a starch derivative with an immobilized enzyme composition of the invention.
摘要:
Provided are a biomimetic silicon mineralized microcapsule immobilized multi-enzyme, a preparation method therefor, and a method for producing tagatose by using same. The preparation method comprises the following steps: (1) pre-mixing glucan phosphorylase, phosphoglucomutase, phosphoglucoisomerase, 6-phosphate tagatose 4-position epimerase and 6-phosphate tagatose phosphatase solutions, then adding the mixture to a calcium chloride solution, and then pouring same into a sodium carbonate solution, stirring and separating same to obtain calcium carbonate microspheres containing a multi-enzyme; (2) mixing the calcium carbonate microspheres with a polyethyleneimine solution to obtain polyethyleneimine-calcium carbonate microspheres after separation; (3) mixing the polyethyleneimine-calcium carbonate microspheres with a silicate solution to obtain biomimetic silicon mineralized-calcium carbonate microspheres after separation; and (4) mixing the biomimetic silicon mineralized-calcium carbonate microspheres with ethylenediamine tetraacetic acid for reaction to remove calcium carbonate, and separating same to obtain a biomimetic silicon mineralized microcapsule immobilized multi-enzyme.
摘要:
Provided are a method for preparing an immobilized multi-enzyme system, and a method for producing tagatose by the immobilized multi-enzyme system. The immobilized multi-enzyme system is formed by uniformly mixing a porous dopamine microsphere with a multi-enzyme mixture which is used for producing tagatose. Five enzymes in an enzymatic catalysis path for converting starch to tagatose are co-immobilized by means of a porous microsphere to obtain an immobilized multi-enzyme system, the immobilized multi-enzyme system is used to catalyze conversion of starch into tagatose, and thus, enzymes can be recycled, thereby greatly reducing the amount of enzymes required for preparation of tagatose, and reducing the production cost.
摘要:
Provided herein, in some embodiments, are systems, methods, and compositions (e.g., cells and cell lysates) for enzymatically converting a polymeric glucose carbohydrate (e.g., starch) to sugar.
摘要:
Provided is a recombinant polynucleotide including a promoter region derived from an acetic acid-producing bacterium and a polynucleotide sequence encoding a target protein operably linked to the promoter, a host cell including the same, and a method of expressing a target gene or protein using the host cell.