Abstract:
Embodiments of the invention stimulate three levels of beta cell physiology: (i) glucose metabolism, (ii) membrane receptor function, and (iii) transcriptional factors that result in the in vivo formation of beta cells in the pancreas for the purpose of treating diabetes. In certain aspects, the methods include the integration of three levels of cellular physiology: metabolism, membrane receptor function, and gene transcription. The integration of multiple levels of cellular physiology produces a synergistic effect on beta cell formation.
Abstract:
The present invention relates generally to a population of cells genetically modified to produce insulin in a glucose responsive manner and uses thereof. More particularly, the present invention relates to a population of cells genetically modified to produce insulin in response to physiologically relevant levels of glucose and uses thereof. The cells of the present invention are useful in a wide variety of applications, in particular in the context of therapeutic and prophylactic regimes directed to the treatment of diabetes and/or the amelioration of symptoms associated with diabetes, based on the transplantation of the cells of the present invention into mammals requiring treatment. Also facilitated is the design of in vitro based screening systems for testing the therapeutic effectiveness and/or toxicity of potential adjunctive treatment regimes.
Abstract:
The invention provides novel polypeptides and polynucleotides encoding such polypeptides and methods for producing such polypeptides by recombinant techniques. Also provided are methods for utilizing such polypeptides to screen for antibacterial compounds.
Abstract:
A gene encoding thermostable glucokinase, a recombinant vector comprising this gene, a transformant transformed with the recombinant vector, and a process for producing thermostable glucokinase with the use of the transformant.
Abstract:
The invention provides Glucose Kinase polypeptides and DNA (RNA) encoding Glucose Kinase polypeptides and methods for producing such polypeptides by recombinant techniques. Also provided are methods for utilizing Glucose Kinase polypeptides to screen for antibacterial compounds.
Abstract:
The invention relates to a method of obtaining a composition comprising allolactose by a applying one or more glucose-deficient lactic acid bacteria strains. The invention also relates to the use of said strains for the preparation of a food product comprising allolactose and to the use of said strains for increasing the content of allolactose in a food product. The invention also relates to a food product comprising allolactose and one or more glucose-deficient lactic acid bacteria strains.
Abstract:
The invention relates to double stranded ribonucleic acid (dsRNA) compositions targeting a glucokinase (GCK) gene, as well as methods of inhibiting expression of a glucokinase (GCK) gene, and methods of treating subjects having a glycogen storage disease (GSD), e.g., type Ia GSD.
Abstract:
The present invention relates to oleaginous yeast strains overexpressing a hexokinase gene, wherein said strains are capable of accumulating lipids. Methods for obtaining said strains as well as methods for producing lipids are also disclosed.
Abstract:
The present invention relates generally to a population of cells genetically modified to produce insulin in a glucose responsive manner and uses thereof. More particularly, the present invention relates to a population of cells genetically modified to produce insulin in response to physiologically relevant levels of glucose and uses thereof. The cells of the present invention are useful in a wide variety of applications, in particular in the context of therapeutic and prophylactic regimes directed to the treatment of diabetes and/or the amelioration of symptoms associated with diabetes, based on the transplantation of the cells of the present invention into mammals requiring treatment. Also facilitated is the design of in vitro based screening systems for testing the therapeutic effectiveness and/or toxicity of potential adjunctive treatment regimes.
Abstract:
The invention provides def1 polypeptides and polynucleotides encoding def1 polypeptides and methods for producing such polypeptides by recombinant techniques. Also provided are methods for utilizing def1 polypeptides to screen for antibacterial compounds.