摘要:
The present disclosure concerns a recombinant yeast host cell exhibiting higher stability and, in some embodiments, higher fermentation performance. The recombinant yeast host cell stability has a limited ability to express an hydrolase during its propagation phase. In return, this limits the cleavage of a yeast cellular component during or after propagation which may be detrimental to the stability and/or fermentation performances. The recombinant yeast host cell expresses a heterologous hydrolase under the control of a heterologous promoter (for limiting the expression of the heterologous hydrolase during propagation and favoring the expression of the heterologous hydrolase during fermentation).
摘要:
The present invention discloses a glucan-based shell-core structure carrier material and preparation and application thereof, and belongs to the technical field of modern food processing. Spherical hyperbranched water-soluble amylum grains are used as the raw material, and an enzymatic grafting and chain extending process is adopted for treatment to modify the surfaces of water-soluble glucan molecules into a firm shell structure with densely cumulated crystal structures, and form the glucan-based carrying material with the shell-core structure of which an inner core cavity has an amorphous state and an outer shell layer has a crystalline state. The adopted spherical hyperbranched water-soluble amylum grains have wide sources of raw materials and are not limited by producing areas and seasons; the preparation has simple and convenient steps, easy operation, controllable reaction conditions, relatively low cost and basically no pollution to the environment; and the prepared product can effectively protect, deliver and release functional nutritional components, can be applied to multiple fields of food, medicine, chemicals for daily use and the like, and has great market prospects and broad economic benefits.
摘要:
The present disclosure generally relates to modified microorganisms comprising an optimized system for oligosaccharide utilization comprising one or more polynucleotides coding for one or more energy independent oligosaccharide transporters for transporting an oligosaccharide into the microorganism, one or more polynucleotides coding for enzymes that catalyze the conversion of the oligosaccharide into at least one phosphorylated saccharide, and one or more polynucleotides coding for enzymes that catalyze the conversion of the phosphorylated saccharide into an isomer of the phosphorylated saccharide that is utilized in one or more enzymatic pathways in the microorganism for the production of an organic molecule such as acetic acid, acrylic acid, 3-hydroxypropionic acid, lactic acid, etc. The present disclosure also generally relates to methods of using the optimized system for oligosaccharide utilization.
摘要:
An object of the present invention is to provide a uronic acid-containing glucan or a modified product thereof. The glucuronic acid-containing glucan of the present invention is a glucuronic acid-containing glucan in which a glucuronic acid residue is bound to at least one non-reducing end of a glucan, and the glucan is a branched α-1,4 glucan or a linear α-1,4 glucan. The glucuronic acid-containing glucan of the present invention can be provided by allowing α-glucan phosphorylase derived from Aquifex aeolicus VF5 to act on glucuronic acid-1-phosphate to thereby transfer a glucuronic acid residue to the non-reducing end of the receptor glucan.
摘要:
Disclosed herein are methods of producing hexoses from saccharides by enzymatic processes. The methods utilize fructose 6-phosphate and at least one enzymatic step to convert it to a hexose.
摘要:
The present disclosure concerns a recombinant yeast host cell exhibiting higher stability and, in some embodiments, higher fermentation performance. The recombinant yeast host cell stability has a limited ability to express an hydrolase during its propagation phase. In return, this limits the cleavage of a yeast cellular component during or after propagation which may be detrimental to the stability and/or fermentation performances. The recombinant yeast host cell expresses a heterologous hydrolase under the control of a heterologous promoter (for limiting the expression of the heterologous hydrolase during propagation and favoring the expression of the heterologous hydrolase during fermentation).
摘要:
An object of the present invention is to provide a glucan containing at least one residue selected from an N-acetylglucosamine residue and a galactose residue, and a modified product. The branched glucan of the present invention is a branched glucan wherein the branched glucan has a plurality of non-reducing ends and at least one residue selected from an N-acetylglucosamine residue and a galactose residue is bound via an α-1,4-bond to each of two or more non-reducing ends of the branched α-1,4-glucan, but neither an N-acetylglucosamine residue nor a galactose residue is present at the position other than the non-reducing ends of the branched α-1,4-glucan.
摘要:
An object of the present invention is to provide a uronic acid-containing glucan or a modified product thereof. The glucuronic acid-containing glucan of the present invention is a glucuronic acid-containing glucan in which a glucuronic acid residue is bound to at least one non-reducing end of a glucan, and the glucan is a branched α-1,4 glucan or a linear α-1,4 glucan. The glucuronic acid-containing glucan of the present invention can be provided by allowing α-glucan phosphorylase derived from Aquifex aeolicus VF5 to act on glucuronic acid-1-phosphate to thereby transfer a glucuronic acid residue to the non-reducing end of the receptor glucan.
摘要:
A method for preparing glucosamine includes the steps of converting fructose-6-phosphate (F6P) and an ammonium salt to glucosamine-6-phosphate (GlcN6P) under the catalysis of glucosamine-6-phosphate deaminase (EC 3.5.99.6, GlmD); and producing glucosamine (GlcN) by the dephosphorylation of GlcN6P under the catalysis of an enzyme capable of catalyzing the dephosphorylation. Such a method can be used to prepare glucosamine by in vitro enzymatic biosystem.
摘要:
The invention relates to immobilized enzyme compositions for the preparation of a hexose. Hexoses include, for example, tagatose, psicose, fructose, allose, mannose, galactose, altrose, talose, sorbose, gulose, idose, and inositol. The invention also relates to an enzymatic process for preparing a hexose from a saccharide by contacting a starch derivative with an immobilized enzyme composition of the invention.