摘要:
A GAA (gate-all-around) semiconductor device includes a first source/drain region comprising an epitaxially grown first buffer layer disposed in contact with first device channel inner spacers and a device substrate, and an epitaxially grown first source/drain disposed adjacent to the first buffer layer. The device also includes a second source/drain region comprising an epitaxially grown second buffer layer disposed in contact with second device channel inner spacers and the device substrate, and an epitaxially grown second source/drain disposed adjacent to the second buffer layer. The first source/drain region and the second source/drain region are disposed on opposing sides of a device gate structure. The device gate structure comprising semiconductor nanosheet channels disposed between the first source/drain region and the second source/drain region.
摘要:
Embodiments are disclosed for a system. The system includes a semiconductor structure. The semiconductor structure includes a stacked field effect transistor (stacked-FET). The stacked-FET includes a top FET having multiple top channels having multiple nano-sheets in contact with corresponding nano-sheets in a corresponding top channels for an active gate. The stacked-FET includes multiple bottom channels having a dielectric material. The semiconductor structure also includes an active gate. The active gate includes the corresponding top channels and corresponding bottom channels having the dielectric material.
摘要:
Transistors including one or more semiconductor fins formed on a substrate. The one or more semiconductor fins are thinner in a channel region than in source and drain regions and have rounded corners formed by an anneal in a gaseous environment. A gate dielectric layer is on the channel region of the one or more semiconductor fins, conforming to the contours of the one or more semiconductor fins. A gate structure is on the gate dielectric layer.
摘要:
A semiconductor device including a gate structure on a channel region portion of a fin structure, and at least one of an epitaxial source region and an epitaxial drain region on a source region portion and a drain region portion of the fin structure. At least one of the epitaxial source region portion and the epitaxial drain region portion include a first concentration doped portion adjacent to the fin structure, and a second concentration doped portion on the first concentration doped portion. The second concentration portion has a greater dopant concentration than the first concentration doped portion. An extension dopant region extending into the channel portion of the fin structure having an abrupt dopant concentration gradient of n-type or p-type dopants of 7 nm per decade or greater.
摘要:
A method of fabricating a semiconductor device includes forming a fin on a substrate. Source/drain regions are arranged on the substrate on opposing sides of the fin. The method includes depositing a semiconductor layer on the source/drain regions. The method includes depositing a germanium containing layer on the fin and the semiconductor layer. The method further includes applying an anneal operation configured to chemically react the semiconductor layer with the germanium containing layer and form a silicon oxide layer.
摘要:
A method of forming a spacer for a vertical transistor is provided. The method includes forming a fin structure on a substrate, depositing a first spacer on exposed surfaces of the substrate to define gaps between the first spacer and the fin structure and depositing a second spacer on the exposed surfaces of the substrate in at least the gaps.
摘要:
A semiconductor device including a gate structure on a channel region portion of a fin structure, and at least one of an epitaxial source region and an epitaxial drain region on a source region portion and a drain region portion of the fin structure. At least one of the epitaxial source region portion and the epitaxial drain region portion include a first concentration doped portion adjacent to the fin structure, and a second concentration doped portion on the first concentration doped portion. The second concentration portion has a greater dopant concentration than the first concentration doped portion. An extension dopant region extending into the channel portion of the fin structure having an abrupt dopant concentration gradient of n-type or p-type dopants of 7 nm per decade or greater.
摘要:
A semiconductor device including a gate structure on a channel region portion of a fin structure, and at least one of an epitaxial source region and an epitaxial drain region on a source region portion and a drain region portion of the fin structure. At least one of the epitaxial source region portion and the epitaxial drain region portion include a first concentration doped portion adjacent to the fin structure, and a second concentration doped portion on the first concentration doped portion. The second concentration portion has a greater dopant concentration than the first concentration doped portion. An extension dopant region extending into the channel portion of the fin structure having an abrupt dopant concentration gradient of n-type or p-type dopants of 7 nm per decade or greater.
摘要:
A semiconductor channel material structure is provided that has an improved, i.e., increased, effective channel area. The semiconductor channel material structure includes a plurality of semiconductor channel material nanosheets stacked one atop the other. The increased channel area is afforded by providing at least one through-stack semiconductor channel material that extends through at least one of the semiconductor channel material nanosheets.
摘要:
A dielectric layer is on top of a first semiconductor stack. The first semiconductor stack is compressively strained. A second semiconductor stack is on top of the dielectric layer. The second semiconductor stack is tensely strained.