摘要:
A semiconductor device comprises a first layer of a substrate arranged on a second layer of the substrate the second layer of the substrate including a doped III-V semiconductor material barrier layer, a gate stack arranged on a channel region of the first layer of a substrate, a spacer arranged adjacent to the gate stack on the first layer of the substrate, an undoped epitaxially grown III-V semiconductor material region arranged on the second layer of the substrate, and an epitaxially grown source/drain region arranged on the undoped epitaxially grown III-V semiconductor material region, and a portion of the first layer of the substrate.
摘要:
An electrical device that includes at least one n-type field effect transistor including a channel region in a type III-V semiconductor device, and at least one p-type field effect transistor including a channel region in a germanium containing semiconductor material. Each of the n-type and p-type semiconductor devices may include gate structures composed of material layers including work function adjusting materials selections, such as metal and doped dielectric layers. The field effect transistors may be composed of fin type field effect transistors. The field effect transistors may be formed using gate first processing or gate last processing.
摘要:
A method of manufacturing a semiconductor device includes forming a plurality of fin structures on a substrate, the plurality of fin structures including a diffusion region, forming an epitaxial layer on the plurality of fin structures in an area of the diffusion region such that a height of the upper surface of the epitaxial layer over plurality of fin structures is substantially equal to the height of the upper surface of the epitaxial layer between the plurality of fin structures, and planarizing the upper surface of the epitaxial layer by one of etch back and reflow annealing.
摘要:
An electrical device that includes at least one n-type field effect transistor including a channel region in a type III-V semiconductor device, and at least one p-type field effect transistor including a channel region in a germanium containing semiconductor material. Each of the n-type and p-type semiconductor devices may include gate structures composed of material layers including work function adjusting materials selections, such as metal and doped dielectric layers. The field effect transistors may be composed of fin type field effect transistors. The field effect transistors may be formed using gate first processing or gate last processing.
摘要:
A semiconductor structure includes a first fin structure having a first strain located on a surface of a first insulator layer portion. The first fin structure includes a first doped silicon germanium alloy fin portion having a first germanium content and a silicon germanium alloy fin portion having a third germanium content. A second fin structure having a second strain is located on a surface of a second insulator layer portion. The second fin structure includes a second doped silicon germanium alloy fin portion having a second germanium content and a silicon germanium alloy fin portion having the third germanium content, wherein the first germanium content differs from the second germanium content and the third germanium content is greater than the first and second germanium contents, and wherein the first strain differs from the second strain.
摘要:
A semiconductor device includes at least one semiconductor fin on an upper surface of a substrate. The at least one semiconductor fin includes a channel region interposed between opposing source/drain regions. A gate stack is on the upper surface of the substrate and wraps around sidewalls and an upper surface of only the channel region. The channel region is a dual channel region including a buried channel portion and a surface channel portion that completely surrounds the buried channel.
摘要:
An electrical device that includes at least one n-type field effect transistor including a channel region in a type III-V semiconductor device, and at least one p-type field effect transistor including a channel region in a germanium containing semiconductor material. Each of the n-type and p-type semiconductor devices may include gate structures composed of material layers including work function adjusting materials selections, such as metal and doped dielectric layers. The field effect transistors may be composed of fin type field effect transistors. The field effect transistors may be formed using gate first processing or gate last processing.
摘要:
A semiconductor device includes at least one first semiconductor fin formed on an nFET region of a semiconductor device and at least one second semiconductor fin formed on a pFET region. The at least one first semiconductor fin has an nFET channel region interposed between a pair of nFET source/drain regions. The at least one second semiconductor fin has a pFET channel region interposed between a pair of pFET source/drain regions. The an epitaxial liner is formed on only the pFET channel region of the at least one second semiconductor fin such that a first threshold voltage of the nFET channel region is different than a second threshold voltage of the pFET channel.
摘要:
A method of forming a semiconductor device that includes forming a fin structure from a semiconductor substrate, and forming a gate structure on a channel region portion of the fin structure. A source region and a drain region are formed on a source region portion and a drain region portion of the fin structure on opposing sides of the channel portion of the fin structure. At least one sidewall of the source region portion and the drain region portion of the fin structure is exposed. A metal semiconductor alloy is formed on the at least one sidewall of the source region portion and the drain region portion of the fin structure that is exposed.
摘要:
Carbon-doped semiconductor material portions are formed on a subset of surfaces of underlying semiconductor surfaces contiguously connected to a channel of a field effect transistor. Carbon-doped semiconductor material portions can be formed by selective epitaxy of a carbon-containing semiconductor material layer or by shallow implantation of carbon atoms into surface portions of the underlying semiconductor surfaces. The carbon-doped semiconductor material portions can be deposited as layers and subsequently patterned by etching, or can be formed after formation of disposable masking spacers. Raised source and drain regions are formed on the carbon-doped semiconductor material portions and on physically exposed surfaces of the underlying semiconductor surfaces. The carbon-doped semiconductor material portions locally retard dopant diffusion from the raised source and drain regions into the underlying semiconductor material regions, thereby enabling local tailoring of the dopant profile, and alteration of device parameters for the field effect transistor.