Abstract:
A semiconductor device may include a substrate having a lower via-hole, an epitaxial layer having an opening exposing a top surface of the substrate, a semiconductor chip disposed on the top surface of the substrate and including first, second, and third electrodes, an upper metal layer connected to the first electrode, a supporting substrate disposed on the upper metal layer and having an upper via-hole, an upper pad disposed on the substrate and extending into the upper via-hole, a lower pad connected to the second electrode in the opening, and a lower metal layer covering a bottom surface of the substrate and connected to the lower pad through the lower via-hole.
Abstract:
Disclosed are a power semiconductor device and a method of fabricating the same which can increase a breakdown voltage of the device through a field plate formed between a gate electrode and a drain electrode and achieve an easier manufacturing process at the same time. The power semiconductor device according to an exemplary embodiment of the present disclosure includes a source electrode and a drain electrode formed on a substrate; a dielectric layer formed between the source electrode and the drain electrode to have a lower height than heights of the two electrodes and including an etched part exposing the substrate; a gate electrode formed on the etched part; a field plate formed on the dielectric layer between the gate electrode and the drain electrode; and a metal configured to connect the field plate and the source electrode.
Abstract:
A semiconductor device may include a substrate having a lower via-hole, an epitaxial layer having an opening exposing a top surface of the substrate, a semiconductor chip disposed on the top surface of the substrate and including first, second, and third electrodes, an upper metal layer connected to the first electrode, a supporting substrate disposed on the upper metal layer and having an upper via-hole, an upper pad disposed on the substrate and extending into the upper via-hole, a lower pad connected to the second electrode in the opening, and a lower metal layer covering a bottom surface of the substrate and connected to the lower pad through the lower via-hole.
Abstract:
Disclosed is a method for manufacturing a power semiconductor device. The method includes forming a lower active layer on a substrate, forming an upper active layer on both sides of the lower active layer, forming a source electrode, a drain electrode, and a gate electrode on the upper active layer and the lower active layer, and forming a heat dissipating and electrical ground electrode penetrating the substrate and the lower active layer and connected to a lower surface of the lower active layer. The upper active layer may be epitaxially grown at a high doping concentration by a selective deposition method using a mask layer that exposes a portion of the lower active layer as a blocking layer.
Abstract:
A field effect transistor includes an active layer and a capping layer sequentially stacked on a substrate, and a gate electrode penetrating the capping layer and being adjacent to the active layer. The gate electrode includes a foot portion adjacent to the active layer and a head portion having a width greater than a width of the foot portion. The foot portion of an end part of the gate electrode has a width less than a width of the head portion of another part of the gate electrode and greater than a width of the foot portion of the another part of the gate electrode. The foot portion of the end part of the gate electrode further penetrates the active layer so as to be adjacent to the substrate.
Abstract:
The inventive concept relates to a system supplying a constant current direct current power to serial loads connected in series with one another.The inventive concept is constituted by a constant current source power supply unit outputting a predetermined direct current, a load connection unit having the same rated current characteristic as the constant current source, a load connection unit having a rated current characteristic smaller than the constant current source, a load connection unit having a rated current characteristic greater than the constant current source, a load connection unit having a rated current characteristic greater or smaller than the constant current source and a circuit controlling or protecting them.
Abstract:
A first nitride semiconductor layer of a semiconductor device is provided on a substrate, a second nitride semiconductor layer is provided on the first nitride semiconductor layer, a first ohmic metal and a second ohmic metal are provided on the second nitride semiconductor layer, a recess region is provided in the second nitride semiconductor layer between the first ohmic metal and the second ohmic metal, a passivation layer covers side of the first ohmic metal and a bottom surface and sides of the recess region, and a Schottky electrode is provided on the first ohmic metal and extends into the recess region.
Abstract:
A manufacturing method for a variable capacitor includes forming a first element of which a capacitance value depends on a voltage applied to both of two terminals of a first area on a substrate, forming a second element having a capacitance value fixed to a second area on the substrate adjacent to the first area, and forming metallic wires for connecting the first element and the second element and connecting the first element and the second element with the outside. The first element maybe a bipolar transistor that may include a diode. The second element maybe a capacitor that includes a dielectric.
Abstract:
A field effect transistor is provided. The field effect transistor may include a capping layer on a substrate, a source ohmic electrode and a drain ohmic electrode on the capping layer, a first insulating layer and a second insulating layer stacked on the capping layer to cover the source and drain ohmic electrodes, a Γ-shaped gate electrode including a leg portion and a head portion, the leg portion being connected to the substrate between the source ohmic electrode and the drain ohmic electrode, and the head portion extending from the leg portion to cover a top surface of the second insulating layer, a first planarization layer on the second insulating layer to cover the Γ-shaped gate electrode, and a first electrode on the first planarization layer, the first electrode being connected to the source ohmic electrode or the drain ohmic electrode.
Abstract:
A cascode switch circuit includes a first transistor, a second transistor, and a protector. A first transistor receives a signal from a first terminal through a first end and transfers the signal to a second end in response to a first control signal. A second transistor delivers the signal that the first transistor transfers to a second terminal in response to a second control signal. A protector is connected between a gate of the first transistor and the second terminal. The first control signal is provided to allow the first transistor to operate in a normally-on state. The second control signal is provided to allow the second transistor to operate in a normally-off state.