Method for manufacturing a wide bandgap junction barrier schottky diode

    公开(公告)号:US09887086B2

    公开(公告)日:2018-02-06

    申请号:US15616382

    申请日:2017-06-07

    申请人: ABB Schweiz AG

    摘要: A method for manufacturing a wide bandgap junction barrier Schottky diode having an anode side and a cathode side is provided, wherein an (n+) doped cathode layer is arranged on the cathode side, at least on p doped anode layer is arranged on the anode side, an (n−) doped drift layer is arranged between the cathode layer and the at least one anode layer, which drift layer extends to the anode side, wherein the following manufacturing steps are performed: a) providing an (n+) doped wide bandgap substrate, b) creating the drift layer on the cathode layer, c) creating the at least one anode layer on the drift layer, d) applying a first metal layer on the anode side on top of the drift layer for forming a Schottky contact, characterized in, that e) creating a second metal layer on top of at least one anode layer, wherein after having created the first and the second metal layer, a metal layer on top of the at least one anode layer has a second thickness and a metal layer on top of the drift layer has a first thickness, wherein the second thickness is smaller than the first thickness, f) then performing a first heating step at a first temperature, by which due the second thickness being smaller than the first thickness an ohmic contact is formed at the interface between the second metal layer and the at least one anode layer, wherein performing the first heating step such that a temperature below the first metal layer is kept below a temperature for forming an ohmic contact.

    METHOD FOR MANUFACTURING A WIDE BANDGAP JUNCTION BARRIER SCHOTTKY DIODE

    公开(公告)号:US20170271158A1

    公开(公告)日:2017-09-21

    申请号:US15616382

    申请日:2017-06-07

    申请人: ABB Schweiz AG

    摘要: A method for manufacturing a wide bandgap junction harrier Schottky diode (1) having an anode side (10) and a cathode side (15) is provided, wherein an (n±) doped cathode layer (2) is arranged on the cathode side (15), at least one p doped anode layer (3) is arranged on the anode side (10), an (n−) doped drift layer (4) is arranged between the cathode layer (2) and the at least one anode layer (3), which drift layer (4) extends to the anode side (10), wherein the following manufacturing steps are performed: a) providing an (n+) doped wide bandgap substrate(100), b) creating the drift layer (4) on the cathode layer (2), c) creating the at least one anode layer (3) on the drift layer (4), d) applying a first metal layer (5) on the anode side (10) on top of the drift layer (4) for forming a Schottky contact (55), characterized in, that e) creating a second metal layer (6) on top of at least one anode layer (3), wherein after having created the first and the second metal layer (5, 6), a metal layer on top of the at least one anode layer (3) has a second thickness (64) and a metal layer on top of the drift layer (4) has a first thickness (54), wherein the second thickness (64) is smaller than the first thickness (54), 1) then performing a first heating step (63) at a first temperature, by which due the second thickness (64) being smaller than the first thickness (54) an ohmic contact (65) is formed at the interface between the second metal layer (6) and the at least one anode layer (3), wherein performing the first healing step (63) such that a temperature below the first metal layer (5) is kept below a temperature for forming an ohmic contact.