摘要:
A resonant tunneling diode includes a substrate, and a mesa structure including a compound semiconductor layer including a heterojunction comprising a multi-barrier structure disposed on the substrate, and an electrode disposed on the upper surface of the compound semiconductor layer. An outer edge portion of the compound semiconductor layer is a first region including crystal defects, and the first region and the electrode are set apart from each other.
摘要:
A compound semiconductor device includes: a substrate; a first barrier layer of a nitride semiconductor formed over the substrate; a well layer of a nitride semiconductor formed over the first barrier layer; and a second barrier layer of a nitride semiconductor formed over the well layer, wherein the first barrier layer, the well layer, and the second barrier layer each include a first region having, as an upper surface, a (0001) plane in terms of crystal orientation and a second region having, as an upper surface, a (000-1) plane in terms of crystal orientation, the first region of the first barrier layer, the first region of the well layer, and the first region of the second barrier layer are stacked, the second region of the first barrier layer, the second region of the well layer, and the second region of the second barrier layer are stacked.
摘要:
A semiconductor device includes a semiconductor substrate and a p-doped layer formed on the substrate having a dislocation density exceeding 108 cm−2. An n-type layer is formed on or in the p-doped layer. The n-type layer includes a II-VI material configured to tolerate the dislocation density to form an electronic device with reduced leakage current over a device with a III-V n-type layer.
摘要:
According to one embodiment, a semiconductor device includes an n-type semiconductor layer, a first electrode, and a nitride semiconductor layer. The n-type semiconductor layer includes diamond. The nitride semiconductor layer is provided between the n-type semiconductor layer and the first electrode. The nitride semiconductor layer includes AlxGa1-xN (0≦x≦1) and is of n-type.
摘要翻译:根据一个实施例,半导体器件包括n型半导体层,第一电极和氮化物半导体层。 n型半导体层包括金刚石。 氮化物半导体层设置在n型半导体层和第一电极之间。 氮化物半导体层包括Al x Ga 1-x N(0≦̸ x≦̸ 1)并且是n型。
摘要:
A semiconductor apparatus includes: a semiconductor apparatus includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type; and a third semiconductor layer of the first conductivity type, wherein: the second semiconductor layer is formed between the first and third semiconductor layers, and the first and second semiconductor layers are in contact with each other; and a first energy level at a bottom edge of a conduction band of the first semiconductor layer is lower than a second energy level at a top edge of a valence band of the second semiconductor layer, and the second energy level at the top edge of the valence band of the second semiconductor layer is substantially the same as a third energy level at a bottom edge of a conduction band of the third semiconductor layer.
摘要:
A diode is described with a III-N material structure, an electrically conductive channel in the III-N material structure, two terminals, wherein a first terminal is an anode adjacent to the III-N material structure and a second terminal is a cathode in ohmic contact with the electrically conductive channel, and a dielectric layer over at least a portion of the anode. The anode comprises a first metal layer adjacent to the III-N material structure, a second metal layer, and an intermediary electrically conductive structure between the first metal layer and the second metal layer. The intermediary electrically conductive structure reduces a shift in an on-voltage or reduces a shift in reverse bias current of the diode resulting from the inclusion of the dielectric layer. The diode can be a high voltage device and can have low reverse bias currents.
摘要:
Example methods and apparatus for Antimonide-based backward diode millimeter-wave detectors are disclosed. A disclosed example backward diode includes a cathode layer adjacent to a first side of a non-uniform doping profile, and an Antimonide tunnel barrier layer adjacent to a second side of the spacer layer.
摘要:
A double barrier resonant tunneling diode (RTD) is formed and integrated with a level of CMOS/BJT/SiGe devices and circuits through processes such as metal-to-metal thermocompressional bonding, anodic bonding, eutectic bonding, plasma bonding, silicon-to-silicon bonding, silicon dioxide bonding, silicon nitride bonding and polymer bonding or plasma bonding. The electrical connections are made using conducting interconnects aligned during the bonding process. The resulting circuitry has a three-dimensional architecture. The tunneling barrier layers of the RTD are formed of high-K dielectric materials such as SiO2, Si3N4, Al2O3, Y2O3, Ta2O5, TiO2, HfO2, Pr2O3, ZrO2, or their alloys and laminates, having higher band-gaps than the material forming the quantum well, which includes Si, Ge or SiGe. The inherently fast operational speed of the RTD, combined with the 3-D integrated architecture that reduces interconnect delays, will produce ultra-fast circuits with low noise characteristics.
摘要翻译:通过金属对金属热压接合,阳极接合,共晶接合,等离子体接合,硅 - 二极管等工艺,形成双层势垒共振隧道二极管(RTD)并与CMOS / BJT / SiGe器件和电路集成, 硅键合,二氧化硅键合,氮化硅键合和聚合物键合或等离子体键合。 电连接使用在接合过程中对准的导电互连来制成。 所得到的电路具有三维结构。 RTD的隧道势垒层由高K电介质材料形成,例如SiO 2,Si 3 N 4 N 4,Al 2 O 3, 2个O 3,3个O 3,3个O 2,3个O 3, TiO 2,TiO 2,HfO 2,Pr 2 O 3,ZrO 2,N 2, >或其合金和层压体,具有比形成量子阱的材料(包括Si,Ge或SiGe)更高的带隙。 RTD的固有的快速操作速度与减少互连延迟的3-D集成架构相结合,将产生具有低噪声特性的超快速电路。
摘要:
A hetero-junction semiconductor device is used as a diode in which a compound semiconductor layer at least contains one or more elements selected from group IIIA elements and one or more elements selected from group VA elements. The compound semiconductor layer is laminated on a surface of a heterogeneous semiconductor having a different conduction type from that of the compound semiconductor.