Abstract:
A new and improved method for growing a p-type nitride III-V compound semiconductor is provided which can produce a p-type nitride compound semiconductors having a high carrier concentration, without the need for annealing to activate impurities after growth. In a preferred embodiment, a p-type nitride compound semiconductor, such as p-type GaN, is grown by metal organic chemical vapor deposition methods using a nitrogen source material which does not release hydrogen during release of nitrogen and the semiconductor is grown in an inactive gas. The nitrogen source materials may be selected from nitrogen compounds that contain hydrogen radicals and alkyl radicals and/or phenyl radicals provided that the total amount of hydrogen radicals is less than or equal to the sum total of alkyl radicals and phenyl radicals present in the nitrogen compound used as the nitrogen source material.
Abstract:
A method for vapor deposition includes monitoring of growth of a semiconductor layer by way of in-situ monitoring. According to the invention, in-situ monitoring is performed by irradiating a light beam onto the surface of the growing layer in a direction nearly perpendicular to the surface. Growth parameters of the layer are detected by monitoring variation of the light reflected by the surface of the layer. A growth condition in a vapor deposition chamber is feedback controlled based on the detected growth parameter.
Abstract:
A heterojunction bipolar transistor formed as a collector top or emitter top type. This heterojunction bipolar transistor can operate at high speed and can be fabricated into a semiconductor integrated circuit with ease. The manufacturing method thereof is also disclosed.
Abstract:
A method and apparatus for the combustion treatment of a toxic gas which forms microparticles by combustion are disclosed wherein the toxic gas is subjected to a combustion treatment in a specific combustion furnace where the combustion gas formed is brought into contact with an aqueous film flowing downwards on the inner wall of the furnace from the upper end portion thereof to the lower end portion thereof or with a cooled surface, and then optionally with aqueous droplets dispersed in the interior space of the furnace. The water captures the microparticles formed by combustion of the toxic gas and is discharged out of the furnace as a mixed flow with the combustion gas thus treated, and optionally the mixed flow is successively treated in a gas-liquid separator.
Abstract:
A junction field effect transistor having a source region, a gate region and a drain region, which are laminated to form a laminated layer, and a channel region formed on one side surface across the laminated layer, and also having a cavity which separates high impurity concentration regions of the source, gate and drain regions is disclosed. A method for manufacturing the above junction field effect transistor is also disclosed which has the steps of laminating semiconductor layers which become a source region, a gate region and a drain region, respectively, removing portions of the semiconductor layers other than portions which become an active region portion, and forming a channel region on one side surface across the laminated layers of the source region, gate region and drain region by the epitaxial growth method, and also forming cavities.
Abstract:
A heterojunction type bi-polar transistor which has a heterojunction in the boundary between an intrinsic base region and an external base region to thereby eliminate the periphery effect and accordingly obtain a high current amplification factor.
Abstract:
A III-V semiconductor device is disclosed, which includes an emitter region, an emitter barrier region having such a barrier height as to substantially restrict a thermionic emission current as compared with a tunneling current and such a barrier width as to permit the tunneling current, a base region containing indium and having higher electron affinity than said emitter region and a collector barrier region having such a barrier height as to substantially prohibit a thermally distributed electron from overflowing and such a barrier width as to substantially prohibit the tunneling current.
Abstract:
In an electrodeposition process using a fused-salt electrolyte in which a desired metal or alloy deposited by electrolysis can be dissolved, and/or using a fused-salt electrolyte from which a highly viscous material is produced on the surface of an electrodeposited metal or alloy upon electrodeposition of the desired metal or alloy, solid particles are dispersed in the aforesaid electrolyte in order to obtain a flat surface of the desired electrodeposited metal or alloy, whereby continuous electrodeposition can be carried out.
Abstract:
A luminous intensity of a semiconductor light emitting device having a multi-layer structure formed of nitride group III-V compound semiconductors is improved by having a thickness d of a light emitting layer (active layer) of the semiconductor light emitting device having a multi-layer structure of nitride group III-V compound semiconductors ranging from 0.3 nm to 1.5 nm.
Abstract:
A semiconductor light emitting device is provided, which does not deteriorate in luminance, maintains a high reliability, permits more free choice of an adhesive, and promises effective extraction of light to the exterior even when it is bonded to a lead frame or other support with the adhesive in practical use. In a GaN light emitting diode, GaN compound semiconductor layers are stacked sequentially on a front surface of a sapphire substrate to form a light emitting diode structure, and a reflective film is formed on a rear surface. Alternatively, the GaN compound semiconductor layers forming the light emitting diode structure are selectively removed by etching to define an inverted mesa-shaped end surface, and the reflective film is formed on the end surface. Both the p-side electrode and the n-side electrode are formed on a common side of the substrate where the GaN compound semiconductor layers are formed.