Abstract:
Methods and apparatus provide filtration for concentrating analytes, such as bacteria or exosomes, of a biological sample, such as blood or urine. The technology may employ membrane devices that implement one or more tangential flow filtration processes such as in stages. An example membrane device may typically include a membrane having sides and ends. The membrane may selectively permit constituent(s) of the sample to pass through while retaining other constituents at one side. An input chamber of the device may include an inlet near one end and an outlet near the other end, and that may permit a tangential flow of the sample along the first side surface, and a trans-membrane passing of constituent(s). An output chamber of the device may be configured at the second side surface to receive the passing constituents. Such devices may be provided in a kit to facilitate targeting of a desired biological analyte concentration.
Abstract:
An apparatus and associated methods of use for a controlled combination of reagents is disclosed. The apparatus includes a vessel 400, a vessel insert 220, and a cap element 200. The vessel 400 has a body portion 410 for receiving a biological sample. The vessel insert 220 receives at least one reagent therein. Preferably, the vessel insert 220 is received in a portion 420 of the vessel 400. The cap element 200 is attached to the vessel 400 to secure the vessel insert 220 in the vessel 400. During use, the vessel insert 220 is adapted to release its contents when the biological sample is introduced into the body portion 410 of the vessel 400 upon application of an intermixing force to the vessel insert 220. A variety of intermixing forces may be applied, depending upon the embodiment of the present invention and its associated methods of use.
Abstract:
A container for culturing a blood sample. The container has a reservoir that is no larger than about 40 ml in volume with culture media therein varying in amount by volume 0.5 ml to about 20 ml. The container is adapted to receive a blood sample drawn from a patient, wherein the blood volume is about 1 ml to about 20 ml. In some embodiments the ratio of blood volume to culture media volume is about 2:1 to about 1:2 and the volume of blood does not exceed about 10 ml. In some embodiments, the media is lytic media. A method for using the container to culture a blood sample is also contemplated. In such method, the container is inoculated with the blood sample. In certain embodiments, the volume of the blood sample does not exceed 10 mls.
Abstract:
An apparatus and associated methods of use for a controlled combination of reagents is disclosed. The apparatus includes a vessel 400, a vessel insert 220, and a cap element 200. The vessel 400 has a body portion 410 for receiving a biological sample. The vessel insert 220 receives at least one reagent therein. Preferably, the vessel insert 220 is received in a portion 420 of the vessel 400. The cap element 200 is attached to the vessel 400 to secure the vessel insert 220 in the vessel 400. During use, the vessel insert 220 is adapted to release its contents when the biological sample is introduced into the body portion 410 of the vessel 400 upon application of an intermixing force to the vessel insert 220. A variety of intermixing forces may be applied, depending upon the embodiment of the present invention and its associated methods of use.
Abstract:
A system and method for developing applications (Apps) for automated assessment and analysis of processed biological samples. Such samples are obtained, combined with nutrient media and incubated. The incubated samples are imaged and the image information is classified according to predetermined criteria. The classified image information is then evaluated according to Apps derived from classified historical image information in a data base. The classified historical image information is compared with the classified image information to provide guidance on further processing of the biological sample through Apps tailored to process provide sample process guidance tailored to the classifications assigned to the image information.
Abstract:
A container for culturing a blood sample. The container has a reservoir that is no larger than about 40 ml in volume with culture media therein varying in amount by volume 0.5 ml to about 20 ml. The container is adapted to receive a blood sample drawn from a patient, wherein the blood volume is about 1 ml to about 20 ml. In some embodiments the ratio of blood volume to culture media volume is about 2:1 to about 1:2 and the volume of blood does not exceed about 10 ml. In some embodiments, the media is lytic media. A method for using the container to culture a blood sample is also contemplated. In such method, the container is inoculated with the blood sample. In certain embodiments, the volume of the blood sample does not exceed 10 mls.
Abstract:
A system and method with increased sensitivity to microorganism growth. The system includes signal processing electronic circuit connected to a consumable or vessel through two or more electrodes that fully penetrate the vessel and are in contact with the fluid contents. The electronic circuit is configured to detect a component of the total impedance of the sample, specifically the “out-of-phase” or imaginary reactance component, which has a sensitive response to organism growth in a frequency-dependent manner. The system detects changes in both the composition of charged molecules in the liquid matrix and the number of microorganisms based on monitoring the sample for change in this parameter. This results in a 5-70% reduction in time-to-detection (TTD). The system and method detect organisms in a plurality of vessel shapes, volumes, and matrix (or media) formats. The electrodes are fully immersed in a continuous body of liquid sample. The distance between electrodes may be adjusted or tuned to fit the needs of the vessel. The voltage inputs can also be adjusted to allow proper detection of the contents within the vessel.
Abstract:
An array of micro-chambers (220) with ISFETs (300) disposed therein for monitoring single cell activity in the microarray to determine the presence or absence of microorganisms in a sample (390).
Abstract:
An array of micro-chambers (220) with ISFETs (300) disposed therein for monitoring single cell activity in the microarray to determine the presence or absence of microorganisms in a sample (390).
Abstract:
An apparatus and associated methods of use for a controlled combination of reagents is disclosed. The apparatus includes a vessel 400, a vessel insert 220, and a cap element 200. The vessel 400 has a body portion 410 for receiving a biological sample. The vessel insert 220 receives at least one reagent therein. Preferably, the vessel insert 220 is received in a portion 420 of the vessel 400. The cap element 200 is attached to the vessel 400 to secure the vessel insert 220 in the vessel 400. During use, the vessel insert 220 is adapted to release its contents when the biological sample is introduced into the body portion 410 of the vessel 400 upon application of an intermixing force to the vessel insert 220. A variety of intermixing forces may be applied, depending upon the embodiment of the present invention and its associated methods of use.