Abstract:
An array of micro-chambers (220) with ISFETs (300) disposed therein for monitoring single cell activity in the microarray to determine the presence or absence of microorganisms in a sample (390).
Abstract:
An array of micro-chambers (220) with ISFETs (300) disposed therein for monitoring single cell activity in the microarray to determine the presence or absence of microorganisms in a sample (390).
Abstract:
Provided herein are methods and kits for modulating the amplification efficiency of nucleic acids, which are useful in multiplex reactions where the amplification efficiency of one or more nucleic acids in the mixture are desired to be modulated relative to one or more other nucleic acids. Embodiments relate to molecular diagnostics, including detecting sequence variants, such as SNPs, insertions deletions, and altered methylation patterns, as well as the modulation of the amplification efficiency of internal control sequences to provide more accurate control sequences for amplification reactions.
Abstract:
An array of micro-chambers (220) with individual ion sensitive field effect transistors (ISFETs) (300) disposed therein for monitoring single cell activity in the microarray to determine the presence or absence of microorganisms in a sample (390). In addition to the presence or absence of a single cell, certain further embodiments contemplate monitoring cell behavior. Cell behavior includes the entire range of cell activity as well as cell response to changes in environmental conditions of changes in response due to the addition of sample constituents.
Abstract:
A high-sensitivity, low-background immuno-amplification assay is provided, which offers a streamlined workflow suitable for high-throughput assays of clinically relevant samples, such as blood and other bodily fluids. The assay comprises the use of two proximity members that each comprise an analyte-specific binding component conjugated to an oligonucleotide. Binding an analyte brings the oligonucleotide moieties of the proximity members in sufficiently close contact that the oligonucleotides form an amplicon. The presence of the analyte then is detected through amplification of the amplicon and detection of the amplified nucleic acids. The sensitivity of the assay of the present invention is improved by preventing spurious or non-specific amplicon formation by proximity members that are not complexed with an analyte.
Abstract:
Provided herein are methods and kits for the improved detection of rare mutations within a high background. Exemplary embodiments relate to kits and methods that include amplification primers, a blocking oligonucleotide, and one or more allele-specific detector probes, useful in the specific detection of rare allelic variants or mutations.
Abstract:
A high-sensitivity, low-background immuno-amplification assay is provided, which offers a streamlined workflow suitable for high-throughput assays of clinically relevant samples, such as blood and other bodily fluids. The assay comprises the use of two proximity members that each comprise an analyte-specific binding component conjugated to an oligonucleotide. Binding an analyte brings the oligonucleotide moieties of the proximity members in sufficiently close contact that the oligonucleotides form an amplicon. The presence of the analyte then is detected through amplification of the amplicon and detection of the amplified nucleic acids. The sensitivity of the assay of the present invention is improved by preventing spurious or non-specific amplicon formation by proximity members that are not complexed with an analyte.