Abstract:
A pierceable cap 11 may be used for containing sample specimens. The pierceable cap 11 may prevent escape of sample specimens before transfer with a transfer device 43. The pierceable cap 11 may fit over a vessel 21. An access port in the shell of the pierceable cap 11 may allow passage of a transfer device 43 through the pierceable cap 11. At least one frangible layer 215, 216 may be configured with cross slits 506 in a particular cross slit geometry. The cross slits 506 may contain an openable portion 644 or be covered by a thin membrane 645. The shell 610 and frangible layer(s) 215, 216 may be integrated into a one piece cap 601, or be separate components 634. The membrane on which the cross slits 506 are placed can be flat or contoured to guide the transfer device 43 to the cross slits 506.
Abstract:
Various embodiments of the present disclosure describe systems and methods for testing samples (e.g., biological samples, environmental samples, food samples etc.) for microbial contamination. For example, some embodiments describe an adapter assembly with a means to penetrate a septum of a collection vessel and permit gaseous communication between a headspace of the collection vessel and a sensor. In some embodiments, the gases in the headspace of the collection vessel can exit the collection vessel without contaminating the environment outside the system or allowing sample contamination. In some embodiments, the adapter assembly includes a membrane configured to prevent liquid in the collection vessel from contacting the sensor. In some embodiments, the adapter assembly can be used to access media inside the collection vessel for subculturing or aliquotting for another diagnostic process such as molecular diagnostics.
Abstract:
A pierceable cap 11 may be used for containing sample specimens. The pierceable cap 11 may prevent escape of sample specimens before transfer with a transfer device 43. The pierceable cap 11 may fit over a vessel 21. An access port in the shell of the pierceable cap 11 may allow passage of a transfer device 43 through the pierceable cap 11. At least one frangible layer 215, 216 may be configured with cross slits 506 in a particular cross slit geometry. The cross slits 506 may contain an openable portion 644 or be covered by a thin membrane 645. The shell 610 and frangible layer(s) 215, 216 may be integrated into a one piece cap 601, or be separate components 634. The membrane on which the cross slits 506 are placed can be flat or contoured to guide the transfer device 43 to the cross slits 506.
Abstract:
Provided herein are methods, systems, and devices for detecting and/or identifying one or more specific microorganisms in a culture sample. Indicator particles, such as surface enhanced Raman spectroscopy (SERS)-active nanoparticles, each having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest, can form a complex with specific microorganisms in the culture sample. Further, agitating magnetic capture particles also having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest can be used to capture the microorganism-indicator particle complex and concentrate the complex in a localized area of an assay vessel for subsequent detection and identification. The complex can be dispersed, pelleted, and redispersed so that the culture sample can be retested a number of times during incubation so as to allow for real-time monitoring of the culture sample.
Abstract:
An apparatus and associated methods of use for a controlled combination of reagents is disclosed. The apparatus includes a vessel 400, a vessel insert 220, and a cap element 200. The vessel 400 has a body portion 410 for receiving a biological sample. The vessel insert 220 receives at least one reagent therein. Preferably, the vessel insert 220 is received in a portion 420 of the vessel 400. The cap element 200 is attached to the vessel 400 to secure the vessel insert 220 in the vessel 400. During use, the vessel insert 220 is adapted to release its contents when the biological sample is introduced into the body portion 410 of the vessel 400 upon application of an intermixing force to the vessel insert 220. A variety of intermixing forces may be applied, depending upon the embodiment of the present invention and its associated methods of use.
Abstract:
An apparatus and associated methods of use for a controlled combination of reagents is disclosed. The apparatus includes a vessel 400, a vessel insert 220, and a cap element 200. The vessel 400 has a body portion 410 for receiving a biological sample. The vessel insert 220 receives at least one reagent therein. Preferably, the vessel insert 220 is received in a portion 420 of the vessel 400. The cap element 200 is attached to the vessel 400 to secure the vessel insert 220 in the vessel 400. During use, the vessel insert 220 is adapted to release its contents when the biological sample is introduced into the body portion 410 of the vessel 400 upon application of an intermixing force to the vessel insert 220. A variety of intermixing forces may be applied, depending upon the embodiment of the present invention and its associated methods of use.
Abstract:
An apparatus for storing and monitoring blood culture bottles. The apparatus has a moveable rack configured as a drum having a plurality of receptacles therein for receiving blood culture bottles. The drum is disposed in a housing. The housing includes a heater and a blower for incubating the blood culture bottles at elevated temperatures. Optionally the apparatus has a plurality of drums, each having a plurality of receptacles for receiving blood culture bottles.
Abstract:
An apparatus for holding sample tubes for sample preparation is provided. The apparatus includes a sample tube holder with an opening to accept a sample tube. The apparatus includes a hinge assembly with a hinge plate and a hinge support, wherein the hinge plate is movable relative to the hinge support. In one example, the hinge plate pivots in two rotation directions and slides in two translational directions relative to the hinge support. The hinge plate limits vertical movement of the sample tube within the sample tube holder. In one aspect, a method includes inserting a sample tube into an opening of a sample tube holder and pivoting and sliding a hinge plate relative to a hinge support, wherein the hinge plate limits vertical movement of the sample tube within the sample tube holder.
Abstract:
Provided herein are methods, systems, and devices for detecting and/or identifying one or more specific microorganisms in a culture sample. Indicator particles, such as surface enhanced Raman spectroscopy (SERS)-active nanoparticles, each having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest, can form a complex with specific microorganisms in the culture sample. Further, agitating magnetic capture particles also having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest can be used to capture the microorganism-indicator particle complex and concentrate the complex in a localized area of an assay vessel for subsequent detection and identification. The complex can be dispersed, pelleted, and redispersed so that the culture sample can be retested a number of times during incubation so as to allow for real-time monitoring of the culture sample.