Abstract:
Disclosed herein are diagnostic assays using surface enhanced Raman spectroscopy (SERS)-active particles, including liquid-based assays; magnetic capture assays; microparticle-nanoparticle satellite structures for signal amplification in an assay; composite SERS-active particles useful for enhanced detection of targets; and sample tubes and processes for using the same.
Abstract:
Disclosed herein are diagnostic assays using surface enhanced Raman spectroscopy (SERS)-active particles, including liquid-based assays; magnetic capture assays; microparticle-nanoparticle satellite structures for signal amplification in an assay; composite SERS-active particles useful for enhanced detection of targets; and sample tubes and processes for using the same.
Abstract:
Provided herein are methods, systems, and devices for detecting and/or identifying one or more specific microorganisms in a culture sample. Indicator particles, such as surface enhanced Raman spectroscopy (SERS)-active nanoparticles, each having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest, can form a complex with specific microorganisms in the culture sample. Further, agitating magnetic capture particles also having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest can be used to capture the microorganism-indicator particle complex and concentrate the complex in a localized area of an assay vessel for subsequent detection and identification. The complex can be dispersed, pelleted, and redispersed so that the culture sample can be retested a number of times during incubation so as to allow for real-time monitoring of the culture sample.
Abstract:
Provided herein are methods, systems, and devices for detecting and/or identifying one or more specific microorganisms in a culture sample. Indicator particles, such as surface enhanced Raman spectroscopy (SERS)-active nanoparticles, each having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest, can form a complex with specific microorganisms in the culture sample. Further, agitating magnetic capture particles also having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest can be used to capture the microorganism-indicator particle complex and concentrate the complex in a localized area of an assay vessel for subsequent detection and identification. The complex can be dispersed, pelleted, and redispersed so that the culture sample can be retested a number of times during incubation so as to allow for real-time monitoring of the culture sample.
Abstract:
Provided herein are methods, systems, and devices for detecting and/or identifying one or more specific microorganisms in a culture sample. Indicator particles, such as surface enhanced Raman spectroscopy (SERS)-active nanoparticles, each having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest, can form a complex with specific microorganisms in the culture sample. Further, agitating magnetic capture particles also having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest can be used to capture the microorganism-indicator particle complex and concentrate the complex in a localized area of an assay vessel for subsequent detection and identification. The complex can be dispersed, pelleted, and redispersed so that the culture sample can be retested a number of times during incubation so as to allow for real-time monitoring of the culture sample.