Abstract:
A method of manufacture of an integrated circuit system includes: fabricating a substrate having an integrated circuit; applying a low-K dielectric layer over the integrated circuit; forming a via and a trench, in the low-K dielectric layer, over the integrated circuit; forming a structure surface by a chemical-mechanical planarization (CMP) process; and applying a direct implant to the structure surface for forming an implant layer and a metal passivation layer including repairing damage, to the low-K dielectric layer, caused by the CMP process.
Abstract:
An interconnect stack and a method of manufacturing the same wherein the interconnect has vertical sidewall vias. The interconnect stack includes a substrate, a metal interconnect formed in the substrate, an etch stop formed on the substrate and the metal interconnect, and an interlayer dielectric (ILD) layer having at least one via formed therein extending through a transition layer formed on the etch stop layer. The via is formed by etching the ILD to a first depth and ashing the interconnect stack to modify a portion of the ILD between the portion of the via formed by etching and the transition layer. Ashing converts this portion of the ILD to an oxide material. The method includes wet etching the interconnect to remove the oxide material and a portion of the transition layer to form a via extending through the ILD to the etch stop layer.
Abstract:
In accordance with the objectives of the invention a new design and method for the implementation thereof is provided in the form of an “oxide ring”. A conventional die is provided with a guard ring or sealing ring, which surrounds and isolates the active surface area of an individual semiconductor die. The “oxide ring” of the invention surrounds the guard ring or sealing ring and forms in this manner a mechanical stress release buffer between the sawing paths of the die and the active surface area of the singulated individual semiconductor die.
Abstract:
An integrated circuit processing system is provided including a substrate having an integrated circuit; an interconnect layer over the integrated circuit; a low-K dielectric layer over the interconnect layer; a hard mask layer over the low-K dielectric layer; a via opening through the hard mask layer and the low-K dielectric layer to the interconnect layer; and an interconnect metal in the via opening.
Abstract:
A semiconductor device includes a dielectric layer in which an upper portion is densified. An interconnection is disposed in the dielectric layer. The densified portion reduces undercut during subsequent processing, improving reliability of the interconnection.
Abstract:
An example embodiment is a method of curing a film over a semiconductor structure. We provide a semiconductor structure comprised of a substrate and an interconnect structure. We provide a film over the semiconductor structure. We provide an electron source, an anode grid between the electron source and the semiconductor structure. We cure the film by exposing the film to an electron beam from the electron source that passes through the anode grid. We control the electron beam by controlling the bias voltage between the anode grid and the semiconductor structure. Another embodiment is a tool for curing a film.
Abstract:
An embodiment of the invention shows a process to form a damascene opening preferably without hardmask overhang or dielectric layer undercut/void. The low-k dielectric material can be sandwiched in two hardmask films to form the dielectric film through which an interconnect opening is etched. A first example embodiment comprises the following. We form a lower interconnect and an insulating layer over a semiconductor structure. We form a first hardmask a dielectric layer, and a second hardmask layer, over the lower interconnect and insulating layer. We etch a first interconnect opening in the first hardmask, the dielectric layer and the second hardmask layer. Lastly, we form an interconnect in the first interconnect opening.
Abstract:
In accordance with the objectives of the invention a new method is provided for the creation of an interconnect pattern. The invention provides for a layer of Photo-Active Dielectric (PAD) to be used for the insulation material in which the interconnect pattern is created, this without the use of an overlying exposure mask of photoresist.
Abstract:
In accordance with the objectives of the invention a new method is provided for the creation of an interconnect pattern. The invention provides for a layer of Photo-Active Dielectric (PAD) to be used for the insulation material in which the interconnect pattern is created, this without the use of an overlying exposure mask of photoresist.
Abstract:
A method of fabricating semiconductor device is provided. First, a recess having a substantially rectangular cross section is formed in a substrate. Then, oxide layers are formed on sidewalls and bottom of the recess by oxygen ion implantation process, wherein oxide layer on sidewalls of recess is thinner than oxide layer on bottom of recess. Thereafter, oxide layer on sidewalls of recess is completely removed, and only a portion of oxide layer on bottom of recess remains. Then, sidewalls of recess are shaped into Σ form by orientation selective wet etching using oxide layer remained on bottom of recess as a stop layer. Finally, oxide layer on bottom of recess is removed. By forming oxide layer on bottom of recess and using it as stop layer in subsequent orientation selective wet etching, the disclosed method can prevent a Σ-shaped recess with a cuspate bottom.