Abstract:
Semiconductor devices and methods of fabricating the same are provided. The methods of fabricating the semiconductor devices may include providing a substrate including an active pattern protruding from the substrate, forming a first liner layer and a field isolating pattern on the substrate to cover a lower portion of the active pattern, forming a second liner layer on an upper portion of the active pattern and the field isolation pattern, and forming a dummy gate on the second liner layer.
Abstract:
In accordance with the objectives of the invention a new design and method for the implementation thereof is provided in the form of an “oxide ring”. A conventional die is provided with a guard ring or sealing ring, which surrounds and isolates the active surface area of an individual semiconductor die. The “oxide ring” of the invention surrounds the guard ring or sealing ring and forms in this manner a mechanical stress release buffer between the sawing paths of the die and the active surface area of the singulated individual semiconductor die.
Abstract:
A semiconductor device having reduced pitting may be formed from isolation layer patterns on a semiconductor substrate defining an active region, a tunnel oxide layer on the active region, the tunnel oxide layer having a nitrified surface, a floating gate on the tunnel oxide layer, a dielectric layer on the floating gate, and a control gate on the dielectric layer.
Abstract:
A method of manufacturing an integrated circuit provides a substrate having a semiconductor device, and includes forming an intermetal dielectric layer over the substrate and the semiconductor device. A metal wire is formed above the semiconductor device and in contact therewith and a passivation layer is formed over the intermetal dielectric layer. A bond pad is formed connected to the metal wire. A protective moat, with sidewall passivation layer, is formed through the passivation layer and the intermetal dielectric layer, and is located between the metal wire and an outside edge of the integrated circuit.
Abstract:
A method to form SOI devices using wafer bonding. A first substrate is provided having trenches in a first side. A first insulating layer is formed over the first side of the first substrate and filling the trenches. We planarize the first insulating layer to form isolation regions (e.g., STI). The three embodiments of the invention planarize the first insulating layer to different levels. In the second embodiment, the first insulating layer is etched back to form a recess. This recess later forms an air gap. We provide a second substrate having a second insulating layer over a first side of the second substrate. We bond the second insulating layer to the first insulating layer. Next, we thin the first substrate from the second side to expose the first insulating layer to form active areas between the isolation regions. Lastly, devices are formed in and on the active areas.
Abstract:
A method to form a silicon on insulator (SOI) device using wafer bonding. A first substrate is provided having an insulating layer over a first side. A second substrate is provided having first isolation regions (e.g., STI) that fill first trenches in the second substrate. Next, we bond the first and second substrate together by bonding the insulating layer to the first isolation regions and the second substrate. Then, a stop layer is formed over the second side of the second substrate. The stop layer and the second side of the second substrate are patterned to form second trenches in the second substrate. The second trenches have sidewalls at least partially defined by the isolation regions and the second trenches expose the second insulating layer. The second trenches define first active regions over the first isolation regions (STI) and define second active regions over the insulating layer. Next, the second trenches are filled with an insulator material to from second isolation regions. Next, the stop layer is removed. Lastly, devices are formed in and on the active regions.
Abstract:
A method for forming shallow trench isolation wherein oxide divots at the edge of the isolation and active regions are reduced or eliminated is described. A trench is etched into a semiconductor substrate. An oxide layer is deposited overlying the semiconductor substrate and filling the trench. Nitrogen atoms are implanted into the oxide layer overlying the trench. The substrate is annealed whereby a layer of nitrogen-rich oxide is formed at the surface of the oxide layer overlying the trench. The oxide layer is planarized to the semiconductor substrate wherein the nitrogen-rich oxide layer is planarized more slowly than the oxide layer resulting in a portion of the oxide layer remaining overlying the trench after the oxide layer overlying the semiconductor substrate has been removed wherein the portion of the oxide layer remaining provides a smooth transition between the shallow trench isolation and the active areas completing the formation of shallow trench isolation in the fabrication of an integrated circuit device.
Abstract:
A semiconductor device includes a plurality of active fins defined by an isolation layer on a substrate, a gate structure on the active fins and the isolation layer, and a gate spacer structure covering a sidewall of the gate structure. A sidewall of the gate structure includes first, second, and third regions having first, second, and third slopes, respectively. The second slope increases from a bottom toward a top of the second region. The second slope has a value at the bottom of the second region less than the first slope. The third slope is greater than the second slope.
Abstract:
A circuit module of a battery pack includes a pattern resistor having conductivity; a temperature sensor that is adjacent to the pattern resistor and that senses a temperature of the pattern resistor; and a current detecting unit that is electrically connected to both ends of the pattern resistor, that is electrically connected to the temperature sensor, and that detects a current flowing in the pattern resistor based on a voltage across the ends of the pattern resistor and a temperature of the pattern resistor.
Abstract:
In a method of forming a dielectric layer structure, a precursor thin film chemisorbed on a substrate in a process chamber is formed using a source gas including a metal precursor. The process chamber is purged and pumped out to remove a remaining source gas therein and to remove any metal precursor physisorbed on the precursor thin film. The forming of the precursor thin film and the purging and pumping out of the process chamber are alternately and repeatedly performed to form a multi-layer precursor thin film. An oxidant is provided onto the multilayer precursor thin film to form a bulk oxide layer.