摘要:
A bonded ceramic-metal composite substrate comprising a ceramic substrate having opposite surfaces and a copper sheet having a face directly bonded to one of the surfaces of the ceramic substrate, characterized in that the Vickers hardness of the copper sheet lies in the range from 40 kg/mm.sup.2 to 100 kg/mm.sup.2.
摘要:
A bonded ceramic-metal composite substrate comprising a ceramic substrate having opposite surfaces and a copper sheet having a face directly bonded to one of the surfaces of the ceramic substrate, wherein the median surface roughness (R.sub.a) of the outer surface of the copper sheet is not greater than 3 .mu.m, and the maximum surface roughness (R.sub.max) of the outer surface of the copper sheet is not greater than 18 .mu.m. The invention improves the manufacturing reliability of various electronic devices such as semiconductor modules.
摘要:
One aspect of the present invention is directed to an aluminum nitride ceramic substrate which comprises an aluminum nitride ceramic sheet and a conductive metallized layer formed thereon. The metallized layer comprises molybdenum and/or tungsten and contains a compound containing yttria and alumina in the vicinity of the interface between the aluminum nitride ceramic sintered sheet and the conductive metallized layer.
摘要:
A high thermal conductive silicon nitride sintered body of this invention is characterized by containing more than 7.5 wt % to at most 17.5 wt % of a rare earth element in terms of the amount of an oxide thereof, if necessary, at most 1.0 wt % of at least one of aluminum nitride and alumina, if necessary, 0.1-3.0 wt % of at least one compound selected from the group consisting of oxides, carbides, nitrides, silicides and borides of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, and at most 0.3 wt % of Li, Na, K, Fe, Ca, Mg, Sr, Ba, Mn and B as impurity cationic elements in terms of total amount thereof, containing a .beta.-type silicon nitride crystal and a grain boundary phase. The sintered body has a ratio of a crystal compound phase in the grain boundary phase to the entire grain boundary phase of at least 20%, a porosity of at most 2.5% by volume, a thermal conductivity of at least 80 W/m.multidot.K and a three-point bending strength of at least 650 MPa at a room temperature.
摘要:
This invention provides a ceramic circuit board comprising: a ceramic base board; a metal circuit plate integrally bonded onto a surface of the ceramic base board; a terminal connecting port formed by bending a part of the metal circuit plate for connecting a terminal of a module, the terminal connecting port being formed so that the terminal connecting port is raised from a surface of the ceramic base board, and a curvature radius of the bent portion provided on the terminal connecting port is set to 0.2 mm or more. An empty communication hole such as groove or through hole may also be formed at a bonding surface between the metal circuit plate and the ceramic base board.
摘要:
A laminated body comprising a ceramic member and a metal member, and a method of forming the laminated body are described. The laminated body is characterized in that the ceramic member contains in its surface portion a bonding agent and the metal member is directly bonded to the surface of the ceramic member. The method of forming the laminated body is characterized in that a bonding agent-containing layer is first formed in the surface of the ceramic member and then the bonding agent-containing layer is heated while being contacted with the metal member.
摘要:
The present invention provides a ceramic circuit board including: a ceramic substrate; a plurality of metal circuit plates bonded to a surface of the ceramic substrate; and parts including semiconductor element integrally bonded to a surface of the metal circuit plates through a solder layer, wherein at least peripheral portion of one metal metal circuit plate to which the parts are solder-bonded and is adjacent to the other metal circuit plates is formed with a projection for preventing solder-flow. According to the structure described above, there can be provided a ceramic circuit board which is free from short-circuit due to the solder-flow or bonding defects of the parts thereby to have an excellent operating reliability, and is capable of being easily mass-produced with a high production yield.
摘要:
This invention provides a silicon nitride circuit board in which a metal circuit plate is bonded to a high thermal conductive silicon nitride substrate having a thermal conductivity of not less than 60 W/m K, wherein a thickness D.sub.s of the high thermal conductive silicon nitride substrate and a thickness D.sub.M of the metal circuit plate satisfy a relational formula D.sub.s .ltoreq.2D.sub.M. The silicon nitride circuit board is characterized in that, when a load acts on the central portion of the circuit board which is held at a support interval of 50 mm, a maximum deflection is not less than 0.6 mm until the silicon nitride substrate is broken. The silicon nitride circuit board is characterized in that, when an anti-breaking test is performed to the circuit board which is held at a support interval of 50 mm, an anti-breaking strength is not less than 500 MPa. The metal circuit plate or a circuit layer are integrally bonded on the silicon nitride substrate by a direct bonding method, an active metal brazing method, or an metalize method. According to the silicon nitride circuit board with the above arrangement, high thermal conductivity and excellent heat radiation characteristics can be obtained, and heat cycle resistance characteristics can be considerably improved.
摘要翻译:本发明提供了一种氮化硅电路板,其中金属电路板结合到导热率不小于60W / m K的高导热氮化硅衬底上,其中高导热氮化硅衬底的厚度Ds 并且金属电路板的厚度DM满足关系式Ds 2DM。 氮化硅电路板的特征在于,当负载作用在保持在50mm的支撑间隔的电路板的中心部分时,直到氮化硅衬底断裂为止,最大偏转不小于0.6mm。 氮化硅电路板的特征在于,当对以50mm的支撑间隔保持的电路板进行防破坏试验时,抗断强度不低于500MPa。 金属电路板或电路层通过直接接合法,活性金属钎焊法或金属化法一体接合在氮化硅衬底上。 根据具有上述结构的氮化硅电路板,可以获得高导热性和优异的散热特性,并且可以显着提高热循环电阻特性。
摘要:
This invention provides a silicon nitride circuit board in which a metal circuit plate is bonded to a high thermal conductive silicon nitride substrate having a thermal conductivity of not less than 60 W/m K, wherein a thickness D.sub.s of the high thermal conductive silicon nitride substrate and a thickness D.sub.M of the metal circuit plate satisfy a relational formula D.sub.s .ltoreq.2D.sub.M. The silicon nitride circuit board is characterized in that, when a load acts on the central portion of the circuit board which is held at a support interval of 50 mm, a maximum deflection is not less than 0.6 mm until the silicon nitride substrate is broken. The silicon nitride circuit board is characterized in that, when an anti-breaking test is performed to the circuit board which is held at a support interval of 50 mm, an anti-breaking strength is not less than 500 MPa. The metal circuit plate or a circuit layer are integrally bonded on the silicon nitride substrate by a direct bonding method, an active metal brazing method, or an metalize method. According to the silicon nitride circuit board with the above arrangement, high thermal conductivity and excellent heat radiation characteristics can be obtained, and heat cycle resistance characteristics can be considerably improved.
摘要:
A bonded ceramic-metal composite substrate comprising a ceramic substrate having opposite surfaces and a copper sheet having a face directly bonded to one of the surfaces of the ceramic substrate, wherein the median surface roughness (R.sub.a) of the outer surface of the copper sheet is not greater than 3 .mu.m, and the maximum surface roughness (R.sub.max) of the outer surface of the copper sheet is not greater than 18 .mu.m. The invention improves the manufacturing reliability of various electronic devices such as semiconductor modules.