Abstract:
A method is presented for assembling a component (30) with a flexible substrate (10), the component having electric contacts (31). The method comprises the steps of placing the component (30) on a first main side (11) of the substrate, applying a machine vision step to estimate a position of the electric contacts, depositing one or more layers (32) of an electrically conductive material or a precursor thereof, said layer extending over an area of the substrate defined by the component to laterally beyond said area, calculating partitioning lines depending on the estimated position of the electric contacts, partitioning the layer into mutually insulated areas (32d) by locally removing material from said layer along said partitioning lines. Also an apparatus is presented that is suitable for carrying out the method.In addition an assembly is present that can be obtained by the method and the apparatus according to the invention.
Abstract:
In a preferred embodiment, a wiring board with embedded device and electromagnetic shielding includes a semiconductor device, a core layer, a shielding lid, shielding slots and build-up circuitry. The build-up circuitry covers the semiconductor device and the core layer. The shielding slots and the shielding lid are electrically connected to at least one ground contact pad of the semiconductor device by the build-up circuitry and can respectively serve as effective horizontal and vertical electromagnetic shields for the semiconductor devices.
Abstract:
A method of forming, on a surface of a substrate, at least one hydrophilic attachment area for the purpose of self-assembling a component or a chip, in which a hydrophobic area, which delimits the hydrophilic attachment area, is produced.
Abstract:
Embodiments of the present disclosure provide a method that comprises providing a first die having a surface comprising a bond pad to route electrical signals of the first die and attaching the first die to a layer of a substrate. The method further comprises forming one or more additional layers of the substrate to embed the first die in the substrate and coupling a second die to the one or more additional layers, the second die having a surface comprising a bond pad to route electrical signals of the second die. The second die is coupled to the one or more additional layers such that electrical signals are routed between the first die and the second die.
Abstract:
Some embodiments of the invention include a connecting structure between a support and at least one die attached to the support. The die includes a number of die bond pads on a surface of the die. The connecting structure includes a plurality of via and groove combinations. Conductive material is formed in the via and groove combinations to provide connection between the die bond pads and bond pads on the support. Other embodiments are described and claimed.
Abstract:
A method of producing an optoelectronic semiconductor component includes providing a carrier having a top side, an underside situated opposite the top side, and a plurality of connection areas arranged at the top side alongside one another in a lateral direction; applying a plurality of optoelectronic components arranged at a distance from one another in a lateral direction at the top side, the components having a contact area facing away from the carrier; applying protective elements to the contact and connection areas; applying an electrically insulating layer to exposed locations of the carrier, contact areas and protective elements; producing openings in the insulating layer by removing protective elements; and arranging an electrically conductive material on the insulating layer and in the openings, wherein the electrically conductive material connects a contact area to an assigned connection area.
Abstract:
A method of mounting a semiconductor chip includes: forming a resin coating on a surface of a path connecting a bonding pad on a surface of a semiconductor chip and an electrode pad formed on a surface of an insulating base material; forming, by laser beam machining, a wiring gutter having a depth that is equal to or greater than a thickness of the resin coating along the path for connecting the bonding pad and the electrode pad; depositing a plating catalyst on a surface of the wiring gutter; removing the resin coating; and forming an electroless plating coating only at a site where the plating catalyst remains.
Abstract:
One aspect of the present invention is a method of mounting a semiconductor chip having: a step of forming a resin coating on a surface of a path connecting a bonding pad on a surface of a semiconductor chip and an electrode pad formed on a surface of an insulating base material; a step of forming, by laser beam machining, a wiring gutter having a depth that is equal to or greater than a thickness of the resin coating along the path for connecting the bonding pad and the electrode pad; a step of depositing a plating catalyst on a surface of the wiring gutter; a step of removing the resin coating; and a step of forming an electroless plating coating only at a site where the plating catalyst remains. Another aspect of the present invention is a three-dimensional structure in which a wiring is formed on a surface, wherein, on the surface of the three-dimensional structure, a recessed gutter for wiring is formed, extending between mutually intersecting adjacent faces of the three-dimensional structure, and wherein at least a part of a wiring conductor is embedded in the recessed gutter for wiring.
Abstract:
A substrate for a semiconductor package is provided having first and second core layers defining a cavity having an adhesive member and sized and shaped to receive a semiconductor chip. The semiconductor package further having a connection member formed on a bond finger and connected to a via pattern formed through the first and second core layers. A stack package is also provided having multiple substrates.
Abstract:
A semiconductor device and method of manufacturing a semiconductor device. One embodiment provides an electrically conductive carrier. A semiconductor chip is placed over the carrier. An electrically insulating layer is applied over the carrier and the semiconductor chip. The electrically insulating layer has a first face facing the carrier and a second face opposite to the first face. A first through-hole is in the electrically insulating layer. Solder material is deposited in the first through-hole and on the second face of the electrically insulating layer.