摘要:
A shallow trench is formed to extend into a handle substrate of a semiconductor-on-insulator (SOI) layer. A dielectric liner stack of a dielectric metal oxide layer and a silicon nitride layer is formed in the shallow trench, followed by deposition of a shallow trench isolation fill portion. The dielectric liner stack is removed from above a top surface of a top semiconductor portion, followed by removal of a silicon nitride pad layer and an upper vertical portion of the dielectric metal oxide layer. A divot laterally surrounding a stack of a top semiconductor portion and a buried insulator portion is filled with a silicon nitride portion. Gate structures and source/drain structures are subsequently formed. The silicon nitride portion or the dielectric metal oxide layer functions as a stopping layer during formation of source/drain contact via holes, thereby preventing electrical shorts between source/drain contact via structures and the handle substrate.
摘要:
The present disclosure generally provides for a method of forming a FinFET with a silicon germanium (SiGe) stressor, in addition to a FinFET structure obtained from embodiments of the method. The method can include forming a semiconductor fin on a buried insulator layer; forming a gate structure on the semiconductor fin; forming a silicon germanium (SiGe) layer on the buried insulator layer, wherein the SiGe layer contacts the semiconductor fin; and heating the SiGe layer, wherein the heating diffuses germanium (Ge) into the semiconductor fin.
摘要:
A method of making a semiconductor device includes forming an intermediate structure including second semiconductor fin portions above a first semiconductor layer, and top first semiconductor fin portions extending from respective ones of the second semiconductor fin portions. The second semiconductor fin portions are selectively etchable with respect to the top first semiconductor fin portions. A dummy gate is on the intermediate structure. The second semiconductor fin portions are selectively etched to define bottom openings under respective ones of the top first semiconductor fin portions. The bottom openings are filled with a dielectric material.
摘要:
An improved transistor with channel epitaxial silicon and methods for fabrication thereof. In one aspect, a method for fabricating a transistor includes: forming a gate stack structure on an epitaxial silicon region, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; encapsulating the epitaxial silicon region under the gate stack structure with sacrificial spacers formed on both sides of the gate stack structure and the epitaxial silicon region; forming a channel of the transistor having a width dimension that approximates that of the epitaxial silicon region and the gate stack structure, the epitaxial silicon region and the gate stack structure formed on the channel of the transistor; removing the sacrificial spacers; and growing a raised epitaxial source and drain from the silicon substrate, with portions of the raised epitaxial source and drain in contact with the epitaxial silicon region.
摘要:
A shallow trench is formed to extend into a handle substrate of a semiconductor-on-insulator (SOI) layer. A dielectric liner stack of a dielectric metal oxide layer and a silicon nitride layer is formed in the shallow trench, followed by deposition of a shallow trench isolation fill portion. The dielectric liner stack is removed from above a top surface of a top semiconductor portion, followed by removal of a silicon nitride pad layer and an upper vertical portion of the dielectric metal oxide layer. A divot laterally surrounding a stack of a top semiconductor portion and a buried insulator portion is filled with a silicon nitride portion. Gate structures and source/drain structures are subsequently formed. The silicon nitride portion or the dielectric metal oxide layer functions as a stopping layer during formation of source/drain contact via holes, thereby preventing electrical shorts between source/drain contact via structures and the handle substrate.
摘要:
An insulating region for a semiconductor wafer and a method of forming same. The insulating region can include a tri-layer structure of silicon oxide, boron nitride and silicon oxide. The insulating region may be used to insulate a semiconductor device layer from an underlying bulk semiconductor substrate. The insulating region can be formed by coating the sides of a very thin cavity with silicon oxide, and filling the remainder of the cavity between the silicon oxide regions with boron nitride.
摘要:
A semiconductor device includes a substrate including designated source or drain (source/drain) regions. An active source/drain is in the designated source/drain regions, and a source/drain cap liner is on an upper surface of the active source/drain. The semiconductor device further includes trench silicide regions completely filed with a silicide material.
摘要:
A semiconductor device includes a substrate including designated source or drain (source/drain) regions. An active source/drain is in the designated source/drain regions, and a source/drain cap liner is on an upper surface of the active source/drain. The semiconductor device further includes trench silicide regions completely filed with a silicide material.
摘要:
A GAA (gate-all-around) semiconductor device includes a first source/drain region comprising an epitaxially grown first buffer layer disposed in contact with first device channel inner spacers and a device substrate, and an epitaxially grown first source/drain disposed adjacent to the first buffer layer. The device also includes a second source/drain region comprising an epitaxially grown second buffer layer disposed in contact with second device channel inner spacers and the device substrate, and an epitaxially grown second source/drain disposed adjacent to the second buffer layer. The first source/drain region and the second source/drain region are disposed on opposing sides of a device gate structure. The device gate structure comprising semiconductor nanosheet channels disposed between the first source/drain region and the second source/drain region.
摘要:
A CFET (complementary field effect transistor) structure including a substrate, a first CFET formed above the substrate, and a second CFET formed above the substrate. Each CFET includes a top FET and a bottom FET. Each of the top FET and bottom FET includes at least one nanosheet channel. The top FET of each CFET has a first polarity. The bottom FET of each a CFET comprises a second polarity. The top FET of the first CFET includes a first work function metal, and the top FET of the second CFET includes a second work function metal.