Abstract:
A cathodoluminescence detection system is provided, including a source of charged particles arranged to illuminate a sample with a charged particle beam, and an optical path having at least two optical components capable of collecting and conveying light radiation coming from the illuminated sample to an analysis device; each optical component of the optical path is selected so that: the maximum output angle of the optical component is less than or equal to 120% of the maximum acceptance angle of the next optical component; and the diameter of the radiation coming from the optical component in the input plane of the next optical component is less than or equal to 120% of the useful input diameter of the next optical component.
Abstract:
A beam monitoring device, method, and system is disclosed. An exemplary beam monitoring device includes a one dimensional (1D) profiler. The 1D profiler includes a Faraday having an insulation material and a conductive material. The beam monitoring device further includes a two dimensional (2D) profiler. The 2D profiler includes a plurality of Faraday having an insulation material and a conductive material. The plurality of Faraday of the 2D profiler are arranged in a pattern that is offset in a direction. The 1D profiler is coupled to a first end of the 2D profiler and extends beyond two adjacent outer edges of the 2D profiler. The beam monitoring device further includes a control arm. The control arm is operable to facilitate movement of the beam monitoring device in the direction.
Abstract:
Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a plasma processing apparatus includes a processing chamber having a chamber wall. The plasma processing apparatus also includes a plasma source in an upper portion of the processing chamber. A sample support is included for situating a sample below the plasma source. An actively-cooled shadow ring having a cooling channel therein for cooling fluid transport is fixedly attached to the chamber wall of the processing chamber, between the plasma source and the sample support.
Abstract:
A beam collimator includes a plurality of lens units that are arranged along a reference trajectory so that a beam collimated to the reference trajectory comes out from an exit of the beam collimator. Each of the plurality of lens units forms a bow-shaped curved gap and is formed such that an angle of a beam traveling direction with respect to the reference trajectory is changed by an electric field generated in the bow-shaped curved gap. A vacant space is provided between one lens unit of the plurality of lens units and a lens unit that is adjacent to the lens unit. The vacant space is directed in a transverse direction of the collimated beam in a cross section that is perpendicular to the reference trajectory. An inner field containing the reference trajectory is connected to an outer field of the plurality of lens units through the vacant space.
Abstract:
A beam monitoring device, method, and system is disclosed. An exemplary beam monitoring device includes a one dimensional (1D) profiler. The 1D profiler includes a Faraday having an insulation material and a conductive material. The beam monitoring device further includes a two dimensional (2D) profiler. The 2D profiler includes a plurality of Faraday having an insulation material and a conductive material. The beam monitoring device further includes a control arm. The control arm is operable to facilitate movement of the beam monitoring device in a longitudinal direction and to facilitate rotation of the beam monitoring device about an axis.
Abstract:
An ion source is disclosed for use in fabrication of semiconductors. The ion source includes an electron emitter that includes a cathode mounted external to the ionization chamber for use in fabrication of semiconductors. In accordance with an important aspect of the invention, the electron emitter is employed without a corresponding anode or electron optics. As such, the distance between the cathode and the ionization chamber can be shortened to enable the ion source to be operated in an arc discharge mode or generate a plasma. Alternatively, the ion source can be operated in a dual mode with a single electron emitter by selectively varying the distance between the cathode and the ionization chamber.
Abstract:
This invention relates to a broad beam ion deposition apparatus (100) including an ion source (101), a target (102), a tillable substrate table (103) and an auxiliary port (104). The target (102) is in the form of a carousel which carries a number of targets and the ion source (101) is configured to produce a substantially rectangular section beam (105).
Abstract:
Cathodoluminescence detection system comprising a collecting optic (112), for collecting light radiation coming from a specimen illuminated by a beam of charged particles and reflecting said light radiation onto analysis means, characterized in that it comprises means (606,614-618) for positioning said collecting optic (112) along at least one dimension.
Abstract:
Ion sources, systems and methods are disclosed. In some embodiments, the ion sources, systems and methods can exhibit relatively little undesired vibration and/or can sufficiently dampen undesired vibration. This can enhance performance (e.g., increase reliability, stability and the like).
Abstract:
Methods and apparatus provide for: a first source of plasma, wherein the plasma includes a first species of ions; a second source of plasma, wherein the plasma includes a second species of ions; selection of the plasma from the first and second sources; and acceleration the first species of ions or the second species of ions toward a semiconductor wafer.