摘要:
An ion beam current measurement device includes a first Faraday cup having a first ion beam entrance slit of a first width W1. The first Faraday cup is configured to generate a first current signal. The device further includes a second Faraday cup having a second ion beam entrance slit of a second width W2. The second Faraday cup is configured to generate a second current signal. The slit widths are designed such that W2 is greater than W1.
摘要:
An ion beam measuring device includes: a mask that is used for shaping an original ion beam into a measuring ion beam including a y beam part elongated in a y direction that is perpendicular to a traveling direction of the ion beam and an x beam part elongated in an x direction that is perpendicular to the traveling direction and the y direction; a detection unit that is configured to detect an x-direction position of the y beam part and a y-direction position of the x beam part; and a beam angle calculating unit that is configured to calculate an x-direction beam angle using the x-direction position and a y-direction beam angle using the y-direction position.
摘要:
An ion implantation system and method are provided where an ion beam is tuned to a first process recipe. The ion beam is scanned along a scan plane at a first frequency, defining a first scanned ion beam. A beam profiling apparatus is translated through the first scanned ion beam and one or more properties of the first scanned ion beam are measured across a width of the first scanned ion, thus defining a first beam profile associated with the first scanned ion beam. The ion beam is then scanned at a second frequency, thus defining a second scanned ion beam, wherein the second frequency is less than the first frequency. A second beam profile associated with the second scanned ion beam is determined based, at least in part, on the first beam profile. Ions are subsequently implanted into a workpiece via the second scanned ion beam.
摘要:
The present invention relates to acquisition of medical image information of an object. In order to provide a user-friendly alignment of X-ray tube (18) and a detector (24), optionally combined with an anti-scatter grid, an alignment arrangement (200) is proposed, which comprises a tube attachment (26) with a first light projection device (28) and a detector attachment (34) with a second light projection device (36). The first and second light projection devices each generate a light pattern (30, 38) on a projection surface (32). The tube attachment (26) and the detector attachment (34) can be brought into a correct spatial arrangement relative to each other by bringing the first light pattern in a predetermined spatial relation with the second light pattern (38) on the projection surface.
摘要:
A beam energy measuring device in an ion implanter includes a parallelism measuring unit that measures a parallelism of an ion beam at a downstream of a beam collimator of the ion implanter and an energy calculating unit that calculates an energy of the ion beam from the measured parallelism. The ion implanter may further include a control unit that controls a high energy multistage linear acceleration unit based on the measured energy of the ion beam so that the ion beam has a target energy.
摘要:
Provided is a method for manufacturing a semiconductor device which includes, on a wafer which has a notch, a plurality of transistors parallel with and perpendicular to a notch direction extending between the center of the wafer and the notch, the method including: preparing the wafer having the front surface which has Off angle of at least 2 degrees and at most 2.8 degrees from plane in a direction in which Twist angle relative to the notch direction is at least 12.5 degrees and at most 32.5 degrees; and doping impurities into the front surface of the wafer in a direction perpendicular to the front surface.
摘要:
A method of etching a substrate is described. In one embodiment, the method includes preparing a mask layer having a pattern formed therein on or above at least a portion of a substrate, etching a feature pattern into the substrate from the pattern in the mask layer using a gas cluster ion beam (GCIB), and controlling a sidewall profile of the feature pattern etched into the substrate by adjusting a beam divergence of the GCIB.
摘要:
An electron microscope is offered which has a detector and a noise canceling circuit whose offset can be easily adjusted if any information about the offset of the detector is not available. Also, a method of adjusting this microscope is offered. The method of adjusting the electron microscope (1) starts with measuring the output voltage from a preamplifier (20) at given timing while blocking the electron beam transmitted through a sample (14) from hitting the detector (15) (step S140). An offset voltage to be set into the noise canceling circuit (30) is calculated based on the measured output voltage from the preamplifier (20) (step S150). The calculated offset voltage is set into the noise canceling circuit (30) (step S160).
摘要:
In an ion implanter, a detector assembly is employed to monitor the ion beam current and incidence angle at the location of the work piece or wafer. The detector assembly includes a plurality of pairs of current sensors and a blocker panel. The blocker panel is disposed a distance away from the sensors to allow certain of the beamlets that comprise the ion beam to reach the sensors. Each sensor in a pair of sensors measures the beam current incident thereon and the incident angle is calculated using these measurements. In this manner, beam current and incidence angle variations may be measured at the work piece site and be accommodated for, thereby avoiding undesirable beam current profiles.
摘要:
In an ion implanter, an ion current measurement device is disposed behind a mask co-planarly with respect to a surface of a target substrate as if said target substrate was positioned on a platen. The ion current measurement device is translated across the ion beam. The current of the ion beam directed through a plurality of apertures of the mask is measured using the ion current measurement device. In this manner, the position of the mask with respect to the ion beam as well as the condition of the mask may be determined based on the ion current profile measured by the ion current measurement device.