摘要:
An ion implantation method includes transporting ions to a wafer as an ion beam, causing the wafer to undergo wafer mechanical slow scanning and also causing the ion beam to undergo beam fast scanning or causing the wafer to undergo wafer mechanical fast scanning in a direction perpendicular to a wafer slow scanning direction, irradiating the wafer with the ion beam by using the wafer slow scanning in the wafer slow scanning direction and the beam fast scanning of the ion beam or the wafer fast scanning of the wafer in the direction perpendicular to the wafer slow scanning direction, measuring a two-dimensional beam shape of the ion beam before ion implantation into the wafer, and defining an implantation and irradiation region of the ion beam by using the measured two-dimensional beam shape to thereby regulate the implantation and irradiation region.
摘要:
An ion generator includes: an arc chamber; a repeller that includes a repeller plate provided within the arc chamber and a repeller extension portion inserted through a through hole communicating the inside and the outside of the arc chamber; and a supporting structure that is provided outside the arc chamber and that supports the repeller so that a gap is ensured between the repeller extension portion and an inner wall of the through hole. The supporting structure includes a cover member that forms, outside the arc chamber, a small chamber communicating with the gap, and an insulation member that electrically insulates the arc chamber and the repeller from each other.
摘要:
An ion implantation apparatus includes an implantation processing chamber, a high voltage unit, and a high-voltage power supply system. In the implantation processing chamber ions are implanted into a workpiece. The high voltage unit includes an ion source unit for generating the ions, and a beam transport unit provided between the ion source unit and the implantation processing chamber. The high-voltage power supply system applies a potential to the high voltage unit under any one of a plurality of energy settings. The high-voltage power supply system includes a plurality of current paths formed such that a beam current flowing into the workpiece is returned to the ion source unit, and each of the plurality of energy settings is associated with a corresponding one of the plurality of current paths.
摘要:
An ion generator is provided with: an arc chamber that is at least partially made up of a material containing carbon; a thermal electron emitter that emits thermal electrons into the arc chamber; and a gas introducer that introduces a source gas and a compound gas into the arc chamber. The source gas to be introduced into the arc chamber contains a halide gas, and the compound gas to be introduced into the arc chamber contains a compound having carbon atoms and hydrogen atoms.
摘要:
A high-energy ion implanter includes a beam generation unit that includes an ion source and a mass analyzer, a high-energy multi-stage linear acceleration unit, a high-energy beam deflection unit that changes the direction of a high-energy ion beam toward a wafer, and a beam transportation unit that transports the deflected high-energy ion beam to the wafer. The beam transportation unit includes a beam shaper, a high-energy beam scanner, a high-energy beam collimator, and a high-energy final energy filter. Further, the high-energy beam collimator is an electric field type beam collimator that collimates a scan beam while performing the acceleration and the deceleration of a high-energy beam by an electric field.
摘要:
An ion implantation apparatus includes a beam parallelizing unit and a third power supply unit. The beam parallelizing unit includes an acceleration lens, and a deceleration lens disposed adjacent to the acceleration lens in an ion beam transportation direction. The third power supply unit operates the beam parallelizing unit under one of a plurality of energy settings. The plurality of energy settings includes a first energy setting suitable for transport of a low energy ion, and a second energy setting suitable for transport of a high energy ion beam. The third power supply unit is configured to generate a potential difference in at least the acceleration lens under the second energy setting, and generate a potential difference in at least the deceleration lens under the first energy setting. A curvature of the deceleration lens is smaller than a curvature of the acceleration lens.
摘要:
During ion implantation into a wafer, an ion beam current is measured, a change in vacuum conductance which changes in accordance with a change of the location of a structure operating in a vacuum beam line chamber or a vacuum treatment chamber is obtained, furthermore, changes in degree of vacuum at one or plural places are detected using a vacuum gauge installed in the vacuum beam line chamber or the vacuum treatment chamber. The amount of an ion beam current is corrected using the obtained vacuum conductance and the detected degree of vacuum at one or plural places, and the dose amount implanted into the wafer is controlled.
摘要:
An ion implantation apparatus includes: a plurality of units for accelerating an ion beam generated in an ion source; and a plurality of units for adjusting a scan beam and implanting ions into a wafer. A horizontal U-shaped folder type beamline having opposite long straight portions includes the plurality of units for adjusting the scan beam in a long straight portion to have substantially the same length as the ion source and the plurality of units for accelerating the ion beam.
摘要:
An ion implantation apparatus includes a beamline device for transporting ions from an ion source to an implantation processing chamber. The implantation processing chamber includes a workpiece holder for mechanically scanning a workpiece with respect to a beam irradiation region. The beamline device may be operated under a first implantation setting configuration suitable for transport of a low energy/high current beam for high-dose implantation into the workpiece, or a second implantation setting configuration suitable for transport of a high energy/low current beam for low-dose implantation into the workpiece. A beam center trajectory being a reference in a beamline is equal from the ion source to the implantation processing chamber in the first implantation setting configuration and the second implantation setting configuration.
摘要:
Provided is an ion implantation method of transporting ions generated by an ion source to a wafer and implanting the ions into the wafer by irradiating an ion beam on the wafer, including, during the ion implantation into the wafer, using a plurality of detection units which can detect an event having a possibility of discharge and determining a state of the ion beam based on existence of detected event having a possibility of discharge and a degree of influence of the event on the ion beam.