Abstract:
A package structure and a formation method are provided. The method includes bonding a first memory-containing chip structure to a second memory-containing chip structure through dielectric-to-dielectric bonding and metal-to-metal bonding. The method also includes bonding a logic control chip structure to the second memory-containing chip structure through dielectric-to-dielectric bonding and metal-to-metal bonding. The logic control chip structure is formed using a more advanced technology node than the second memory-containing chip structure.
Abstract:
A semiconductor device is provided. The semiconductor includes a supporting silicon layer and a memory module. The memory module and the supporting silicon layer are bonded via a bonding structure. The bonding structure includes at least one bonding film whose thickness is less than 200 Å.
Abstract:
A package structure and a formation method are provided. The method includes disposing a first chip structure and a second chip structure over a carrier substrate. The method also includes forming an interconnection structure directly over and contacting the first chip structure and the second chip structure. The interconnection structure has multiple dielectric layers and multiple conductive features. One of the conductive features extends across a first edge of the first chip structure and a second edge of the second chip structure and is electrically connecting the first chip structure and the second chip structure. The method further includes directly bonding a third chip structure to the interconnection structure through dielectric-to-dielectric bonding and metal-to-metal bonding.
Abstract:
A package structure is provided. The package structure includes a first interconnect structure formed over a first substrate. The package structure also includes a second interconnect structure formed below a second substrate. The package structure further includes a bonding structure between the first interconnect structure and the second interconnect structure. In addition, the bonding structure includes a first intermetallic compound (IMC) and a second intermetallic compound (IMC). The bonding structure also includes an underfill layer surrounding the bonding structure. A width of the first IMC is greater than a width of the second IMC, and the underfill layer covers a sidewall of the first IMC and a sidewall of the second IMC.
Abstract:
A method of making a semiconductor component includes etching a substrate to define an opening. The method further includes depositing a first dielectric liner in the opening, wherein the first dielectric liner has a first stress. The method further includes depositing a second dielectric liner over the first dielectric liner, wherein the second dielectric liner has a second stress, and a direction of the first stress is opposite a direction of the second stress. The method further includes depositing a conductive material over the second dielectric liner.
Abstract:
A wafer-level pulling method includes securing a top holder to a plurality of chips. The method further includes securing a bottom holder to a wafer, wherein the plurality of chips are bonded to the wafer by a plurality of solder bumps. The method further includes softening the plurality of solder bumps. The method further includes stretching the plurality of softened solder bumps, wherein stretching the plurality of softened solder bumps comprises leveling the plurality of chips using a plurality of levelling devices separated from the plurality of chips, and a first levelling device of the plurality of levelling devices has a different structure from a second levelling device of the plurality of levelling devices.
Abstract:
An integrated fan out (InFO) antenna includes a reflector on a surface of a substrate; and a package. The package includes a redistribution layer (RDL) arranged to form an antenna ground, and a patch antenna over the RDL, wherein the RDL is between the patch antenna and the reflector. The InFO antenna further includes a plurality of connecting elements bonding the package to the reflector. Each connecting element of the plurality of connecting elements is located inside an outer perimeter of the reflector. The InFO antenna is configured to output a signal having a wavelength.
Abstract:
A semiconductor device includes a substrate having a major surface and conductive bumps distributed over the major surface of the substrate. Each conductive bump of a first subset of the conductive bumps comprises a regular body and a second subset of the conductive bumps comprises a group of separate conductive bumps uniformly distributed around a periphery of a central opening.
Abstract:
A test structure including an array of microbumps electrically connecting a chip and a substrate, wherein a width of each microbump of the array of microbumps is equal to or less than about 50 microns (μm). The test structure further includes an interconnect structure connected to the array of microbumps. The test structure further includes an array of test pads around a periphery of the array of microbumps, wherein a test pad of the array of test pads is connected to a corresponding microbump of the array of microbumps through the interconnect structure. A width of the test pad is greater than a width of the corresponding microbump, and the test pad is adapted to be covered after circuit probing by a passivation material to prevent particle and corrosion issues.
Abstract:
A copper interconnect structure in a semiconductor device comprises a dielectric layer having sidewalls and a surface defining an opening in the dielectric layer. The copper interconnect structure also comprises a barrier layer deposited on the sidewalls and the surface of the dielectric layer defining the opening. The copper interconnect structure further comprises a barrier/seed mixed layer deposited on the barrier layer. The copper interconnect structure additionally comprises an adhesive layer deposited on the barrier/seed mixed layer. The copper interconnect structure also comprises a seed layer deposited on the adhesive layer.