Abstract:
Nanowire channel structures of continuously stacked nanowires for complementary metal oxide semiconductor (CMOS) devices are disclosed. In one aspect, an exemplary CMOS device includes a nanowire channel structure that includes a plurality of continuously stacked nanowires. Vertically adjacent nanowires are connected at narrow top and bottom end portions of each nanowire. Thus, the nanowire channel structure comprises a plurality of narrow portions that are narrower than a corresponding plurality of central portions. A wrap-around gate material is disposed around the nanowire channel structure, including the plurality of narrow portions, without entirely wrapping around any nanowire therein. The exemplary CMOS device provides, for example, a larger effective channel width and better gate control than a conventional fin field-effect transistor (FET) (FinFET) of a similar footprint. The exemplary CMOS device further provides, for example, a shorter nanowire channel structure than a conventional nanowire FET.
Abstract:
A method includes forming a first spacer structure on a dummy gate of a semiconductor device and forming a sacrificial spacer on the first spacer structure. The method also includes etching a structure of the semiconductor device to create an opening, removing the sacrificial spacer via the opening, and depositing a material to close to define a gap.
Abstract:
A semiconductor device includes a gate stack. The semiconductor device also includes a wrap-around contact arranged around and contacting substantially all surface area of a regrown source/drain region of the semiconductor device proximate to the gate stack.
Abstract:
A first and a second instance of a common structured stack are formed, respectively, on a first fin and a second fin. The common structured stack includes a work-function metal layer, and a barrier layer. The barrier layer of the first instance of the common structured stack is etched through, and the work-function metal layer of the first instance of the common structure is partially etched. The partial etch forms a thinner work-function metal layer, having an oxide of the work-function metal as a new barrier layer. A gate element is formed on the new barrier layer.
Abstract:
A fin-type semiconductor device includes a gate structure and a source/drain structure. The fin-type semiconductor device also includes a gate hardmask structure coupled to the gate structure. The gate hardmask structure comprises a first material. The fin-type semiconductor device further includes a source/drain hardmask structure coupled to the source/drain structure. The source/drain hardmask structure comprises a second material.
Abstract:
Self-aligned metal cut and via for Back-End-Of-Line (BEOL) processes for semiconductor integrated circuit (IC) fabrication, and related processes and devices, is disclosed. In this manner, mask placement overlay requirements can be relaxed. This relaxation can be multiples of that allowed by conventional BEOL techniques. This is enabled through application of different fill materials for alternating lines in which a conductor will later be placed. With these different fill materials in place, a print cut and via mask is used, with the mask allowed to overlap other adjacent fill lines to that of the desired line. Etching is then applied that is selective to the desired line but not adjacent lines.
Abstract:
An integrated circuit device includes a first metal layer including aluminum. The integrated circuit device includes a second metal layer including an interconnect structure. The interconnect structure includes a layer of first material including aluminum. The integrated circuit device includes an inter-diffusion layer that includes aluminum. The inter-diffusion layer is proximate to the first metal layer and proximate to the layer of first material including aluminum. The integrated circuit device includes an aluminum oxide barrier layer. The aluminum oxide barrier layer is proximate to a dielectric layer and proximate to the layer of first material including aluminum.
Abstract:
A method of forming an electronic device includes forming an oxygen scavenging layer proximate to a dielectric layer in a gate region of a field effect transistor (FET). The interface layer is between the dielectric layer and a substrate of the FET. The method further includes forming a dipole layer by annealing the oxygen scavenging layer, the dielectric layer, and the interface layer.
Abstract:
Non-volatile memory devices and logic devices are fabricated using processes compatible with high dielectric constant/metal gate (HK/MG) processes for increased cell density and larger scale integration. A doped oxide layer, such as a silicon-doped hafnium oxide (HfO2) layer, is implemented as a ferroelectric dipole layer in a nonvolatile memory device.
Abstract:
Methods of fabricating middle of line (MOL) layers and devices including MOL layers. A method in accordance with an aspect of the present disclosure includes depositing a hard mask across active contacts to terminals of semiconductor devices of a semiconductor substrate. Such a method also includes patterning the hard mask to selectively expose some of the active contacts and selectively insulate some of the active contacts. The method also includes depositing a conductive material on the patterned hard mask and the exposed active contacts to couple the exposed active contacts to each other over an active area of the semiconductor devices.