Abstract:
A memory cell capacitor (C3) of a DRAM is formed by use of a MIM capacitor which uses as its electrode a metal wiring line of the same layer (M3) as metal wiring lines within a logic circuit (LOGIC), thereby enabling reduction of process costs. Higher integration is achievable by forming the capacitor using a high dielectric constant material and disposing it above a wiring layer in which bit lines (BL) are formed. In addition, using 2T cells makes it possible to provide a sufficient signal amount even when letting them operate with a low voltage. By commonizing the processes for fabricating capacitors in analog (ANALOG) and memory (MEM), it is possible to realize a semiconductor integrated circuit with the logic, analog and memory mounted together on one chip at low costs.
Abstract:
A semiconductor device having a non-volatile memory is disclosed, whose disturb defect can be diminished or prevented. A memory cell of the non-volatile memory has a memory gate electrode formed over a main surface of a semiconductor substrate through an insulating film for charge storage. A first side wall is formed on a side face of the memory gate electrode, and at a side face of the first side wall, a second side wall is formed. On an upper surface of an n+-type semiconductor region for source in the memory cell there is formed a silicide layer whose end portion on the memory gate electrode MG side is defined by the second side wall.
Abstract:
There is provided a solid-state image pickup device including ADCs that can be arranged in a limited space. The potential of a pixel signal outputted through a vertical readout line is held at a node. A plurality of capacitors are capacitively coupled to the node at which the pixel signal is held. The potential of the node is decreased in a stepwise manner by sequentially switching the voltages of the counter electrodes of the capacitors by the control of transistors. A comparator compares the potential of the node with the potential of the dark state of the pixel, and determines the upper bits of a digital value when the potential of the node becomes lower than the potential of the dark state. Following this, the conversion of the lower bits of the digital value is started. Therefore, it is possible to simplify the configuration of each ADC and arrange each ADC in a limited space.
Abstract:
To improve the performance of semiconductor devices. Over an n+-type semiconductor region for source/drain of an n-channel type MISFET and a first gate electrode, and over a p+-type semiconductor region for source/drain of a p-channel type MISFET and a second gate electrode, which are formed over a semiconductor substrate, a metal silicide layer including nickel platinum silicide is formed by a salicide process. After that, a tensile stress film is formed over the whole face of the semiconductor substrate, and then the tensile stress film over the p-channel type MISFET is removed by dry-etching, and, after a compression stress film is formed over the whole face of the semiconductor substrate, the compression stress film over the n-channel type MISFET is removed by dry-etching. The Pt concentration in the metal silicide layer is highest at the surface, and becomes lower as the depth from the surface increases.
Abstract:
A technique capable of improving speed of a set operation, which controls writing rate in a semiconductor device including a memory cell using a phase-change material. The technique uses means for setting a set-pulse voltage to be applied to the phase-change material to have two steps: the first-step voltage sets a temperature of the phase-change memory to a temperature at which the fastest nucleation is obtained; and the second pulse sets the temperature to a temperature at which the fastest crystal growth is obtained, thereby obtaining solid-phase growth of the phase-change material without melting. Moreover, the technique uses means for controlling the two-step voltage applied to the phase-change memory by a two-step voltage applied to a word line capable of reducing the drain current variation.
Abstract:
A compile technique is provided for multicore allocation, by which a desired running performance can be achieved. The steps of analyzing a taskization directive, taskizing a specified part, and assigning a specified CPU the task are adopted for the compile technique. According to the program-to-tasks-decomposition compile technique, the multicore decomposition is performed by allocating tasks to CPUs individually while following a task decomposition directive of a main part designated by a user. When no direction is issued concerning a CPU to be allocated, the relation with a principal task is judged from the relation of invocation and the dependency, and CPU to be allocated, and then the CPU to be allocated is determined. In allocation to the CPU, an efficient multicore-task decomposition is achieved in consideration of copy and assignment of one processing to more than one CPU while figuring in the balance between processing speed and resources.
Abstract:
After silicon oxide film (9) is formed on the surface of a semiconductor substrate (1), the silicon oxide film (9) in a region in which a gate insulation film having a small effective thickness is formed is removed using diluted HF and after that, high dielectric constant insulation film (10) is formed on the semiconductor substrate (1). Consequently, two kinds of gate insulation films, namely, a gate insulation film (12) comprised of stacked film of high dielectric constant insulation film (10) and silicon oxide film (9) and gate insulation film (11) comprised of the high dielectric constant insulation film (10) are formed on the semiconductor substrate (1).
Abstract:
A memory cell mat is divided into a plurality of entries, and an arithmetic logic unit is arranged corresponding to each entry. Between the entries and the corresponding arithmetic logic units, arithmetic/logic operation is executed in bit-serial and entry-parallel manner. Where parallel operation is not very effective, data is transferred in entry-serial and bit-parallel manner to a group of processors provided at a lower portion of the memory mat. In this manner, a large amount of data can be processed at high speed regardless of the contents of operation or data bit width.
Abstract:
A semiconductor integrated circuit has a central processing unit and a rewritable nonvolatile memory area disposed in an address space of the central processing unit. The nonvolatile memory area has a first nonvolatile memory area and a second nonvolatile memory area, which memorize information depending on the difference of threshold voltages. The first nonvolatile memory area has the maximum variation width of a threshold voltage for memorizing information set larger than that of the second nonvolatile memory area. When the maximum variation width of the threshold voltage for memorizing information is larger, since stress to a memory cell owing to a rewrite operation of memory information becomes larger, it is inferior in a point of guaranteeing the number of times of rewrite operation; however, since a read current becomes larger, a read speed of memory information can be expedited. The first nonvolatile memory area can be prioritized to expedite a read speed of the memory information and the second nonvolatile memory area can be prioritized to guarantee the number of times of rewrite operation of memory information more.
Abstract:
In the data read operation, a memory cell and a dummy memory cell are respectively coupled to two bit lines of a selected bit line pair, a data read current is supplied. In the selected memory cell column, a read gate drives the respective voltages on a read data bus pair, according to the respective voltages on the bit lines. A data read circuit amplifies the voltage difference between the read data buses so as to output read data. The use of the read gate enables the read data buses to be disconnected from a data read current path. As a result, respective voltage changes on the bit lines are rapidly produced, and therefore, the data read speed can be increased.