Abstract:
Replacement gate work function material stacks are provided, which provides a work function about the energy level of the conduction band of silicon. After removal of a disposable gate stack, a gate dielectric layer is formed in a gate cavity. A metallic compound layer including a metal and a non-metal element is deposited directly on the gate dielectric layer. At least one barrier layer and a conductive material layer is deposited and planarized to fill the gate cavity. The metallic compound layer includes a material, which provides, in combination with other layer, a work function about 4.4 eV or less, and can include a material selected from tantalum carbide, metallic nitrides, and a hafnium-silicon alloy. Thus, the metallic compound layer can provide a work function that enhances the performance of an n-type field effect transistor employing a silicon channel. Optionally, carbon doping can be introduced in the channel.
Abstract:
A stacked device is provided. The stacked device includes a reduced height active device layer, and a plurality of lower source/drain regions in the reduced height active device layer. The stacked device further includes a lower interlayer dielectric (ILD) layer on the plurality of lower source/drain regions, and a conductive trench spacer in the lower interlayer dielectric (ILD) layer, wherein the conductive trench spacer is adjacent to one of the plurality of lower source/drain regions. The stacked device further includes a top active device layer adjacent to the lower interlayer dielectric (ILD) layer, and an upper source/drain section in the top active device layer. The stacked device further includes a shared contact in electrical connection with the upper source/drain section, the conductive trench spacer, and the one of the plurality of lower source/drain regions.
Abstract:
A microelectronic structure including a plurality of lower transistors and a plurality of upper transistor, where each of the plurality of lower transistors and the plurality of upper transistors includes a plurality of channel. Where an upper center vertical axis of each of the plurality of upper transistors is staggered from a lower center vertical axis of each of the lower transistors. A lower gate cut is located between each of the plurality of lower transistors. A first upper gate cut located adjacent to a first upper transistor of the plurality of upper transistors, where the first upper gate cut is in direct contact with a plurality of first channels of the first upper transistor.
Abstract:
A method of forming a semiconductor structure includes forming a fin cut mask over a region in a fin field-effect transistor (finFET) structure. The finFET structure includes one or more fins and one or more gates and source/drain regions formed over the one or more fins in active regions of the finFET structure. The method also includes performing a fin cut by removing a portion of at least one fin. The portion of the at least one fin is determined by an exposed area of the fin cut mask. The exposed area of the fin cut mask includes at least a portion of the at least one fin between a first dummy gate and a second dummy gate formed over the at least one fin. The method further includes removing the fin cut mask and depositing an oxide to replace the portion of the at least one fin removed during the fin cut.
Abstract:
After forming a laterally contacting pair of a semiconductor fin and a conductive strap structure having a base portion vertically contacting a deep trench capacitor embedded in a substrate and a fin portion laterally contacting the semiconductor fin, conducting spikes that are formed on the sidewalls of the deep trench are removed or pushed deeper into the deep trench. Subsequently, a dielectric cap that inhibits epitaxial growth of a semiconductor material thereon is formed over at least a portion of the base portion of the conductive strap structure. The dielectric cap can be formed either over an entirety of the base portion having a stepped structure or on a distal portion of the base portion.
Abstract:
A method of forming a semiconductor structure includes forming a fin cut mask over a region in a fin field-effect transistor (finFET) structure. The finFET structure includes one or more fins and one or more gates and source/drain regions formed over the one or more fins in active regions of the finFET structure. The method also includes performing a fin cut by removing a portion of at least one fin. The portion of the at least one fin is determined by an exposed area of the fin cut mask. The exposed area of the fin cut mask includes at least a portion of the at least one fin between a first dummy gate and a second dummy gate formed over the at least one fin. The method further includes removing the fin cut mask and depositing an oxide to replace the portion of the at least one fin removed during the fin cut.
Abstract:
After forming a laterally contacting pair of a semiconductor fin and a conductive strap structure having a base portion vertically contacting a deep trench capacitor embedded in a substrate and a fin portion laterally contacting the semiconductor fin, conducting spikes that are formed on the sidewalls of the deep trench are removed or pushed deeper into the deep trench. Subsequently, a dielectric cap that inhibits epitaxial growth of a semiconductor material thereon is formed over at least a portion of the base portion of the conductive strap structure. The dielectric cap can be formed either over an entirety of the base portion having a stepped structure or on a distal portion of the base portion.
Abstract:
A bulk semiconductor substrate including a first semiconductor material is provided. A well trapping layer including a second semiconductor material and a dopant is formed on a top surface of the bulk semiconductor substrate. The combination of the second semiconductor material and the dopant within the well trapping layer is selected such that diffusion of the dopant is limited within the well trapping layer. A device semiconductor material layer including a third semiconductor material can be epitaxially grown on the top surface of the well trapping layer. The device semiconductor material layer, the well trapping layer, and an upper portion of the bulk semiconductor substrate are patterned to form at least one semiconductor fin. Semiconductor devices formed in each semiconductor fin can be electrically isolated from the bulk semiconductor substrate by the remaining portions of the well trapping layer.
Abstract:
Embodiments of present invention provide a method of forming a semiconductor structure. The method includes forming a semiconductor structure having a first metal layer and a plurality of dielectric layers on top of the first metal layer; creating one or more openings through the plurality of dielectric layers to expose the first metal layer underneath the plurality of dielectric layers; causing the one or more openings to expand downward into the first metal layer and expand horizontally into areas underneath the plurality of dielectric layers; applying a layer of lining material in lining sidewalls of the one or more openings inside the plurality of dielectric layers; and filling the expanded one or more openings with a conductive material.
Abstract:
After removal of the disposable gate structures to form gate cavities in a planarization dielectric layer, a silicon oxide layer is conformally deposited on silicon-oxide-based gate dielectric portions in the gate cavities. A portion of the silicon oxide layer can be nitridated to form a silicon oxynitride layer. A patterned masking material layer can be employed to physically expose a semiconductor surface from a first-type gate cavity. The silicon oxide layer can be removed while preserving an underlying silicon-oxide-based gate dielectric portion in a second-type gate cavity. A stack of a silicon oxynitride layer and an underlying silicon-oxide-based gate dielectric can be protected by a patterned masking material layer in a third-type gate cavity during removal of the silicon oxide layer in the second-type gate cavity. A high dielectric constant gate dielectric layer can be formed in the gate cavities to provide gate dielectrics of different types.