Abstract:
A MOSFET may be formed with a strain-inducing mismatch of lattice constants that improves carrier mobility. In exemplary embodiments a MOSFET includes a strain-inducing lattice constant mismatch that is not undermined by a recessing step. In some embodiments a source/drain pattern is grown without a recessing step, thereby avoiding problems associated with a recessing step. Alternatively, a recessing process may be performed in a way that does not expose top surfaces of a strain-relaxed buffer layer. A MOSFET device layer, such as a strain-relaxed buffer layer or a device isolation layer, is unaffected by a recessing step and, as a result, strain may be applied to a channel region without jeopardizing subsequent formation steps.
Abstract:
The inventive concepts provide semiconductor devices and methods of manufacturing the same. One semiconductor device includes a substrate, a device isolation layer disposed on the substrate, a fin-type active pattern defined by the device isolation layer and having a top surface higher than a top surface of the device isolation layer, a first conductive line disposed on an edge portion of the fin-type active pattern and on the device isolation layer adjacent to the edge portion of the fin-type active pattern, and an insulating thin layer disposed between the fin-type active pattern and the first conductive line. The first conductive line forms a gate electrode of an anti-fuse that may be applied with a write voltage.
Abstract:
A fuse structure includes a first fin pattern disposed in a field insulating layer that includes an upper surface that projects above an upper surface of the field insulating layer, a conductive pattern on the field insulating layer that crosses the first fin pattern, a first semiconductor region positioned on at least one side of the conductive pattern, and first and second contacts disposed on the conductive pattern on each side of the first fin pattern. The fuse structure may be included in a semiconductor device.
Abstract:
Provided is an e-fuse structure of a semiconductor device. the e-fuse structure may include a fuse link formed of a first metal material to connect a cathode with an anode, a capping dielectric covering a top surface of the fuse link, and a dummy metal plug penetrating the capping dielectric and being in contact with a portion of the fuse link. The dummy metal plug may include a metal layer and a barrier metal layer interposed between the metal layer and the fuse link. The barrier metal layer may be formed of a second metal material different from the first metal material.
Abstract:
A method for forming a pattern of a semiconductor device and a semiconductor device formed using the same are provided. The method includes forming a buffer layer on a substrate, forming a channel layer on the buffer layer, forming support patterns penetrating the channel layer, and forming channel fin patterns and a buffer pattern by patterning the channel layer and the buffer layer. The channel layer includes a material of which a lattice constant is different from that of the buffer layer, and each of the channel fin patterns has both sidewalls that are in contact with the support patterns and are opposite to each other.
Abstract:
A semiconductor device is provided. The semiconductor device includes a first fin on a substrate, a first gate electrode formed on the substrate to intersect the first fin, a first elevated source/drain on the first fin on both sides of the first gate electrode, and a first metal alloy layer on an upper surface and sidewall of the first elevated source/drain.
Abstract:
A fuse structure and a method of blowing the same are provided. The fuse structure includes a conductive line on a substrate, first and second vias on the conductive line that are spaced apart from each other, a cathode electrode line that is electrically connected to the first via, an anode electrode line that is electrically connected to the second via, and a dummy pattern that is adjacent at least one of the cathode and anode electrode lines and electrically isolated from the conductive line.
Abstract:
In semiconductor devices in which both NMOS devices and PMOS devices are used to perform in different modes such as analog and digital modes, stress engineering is selectively applied to particular devices depending on their required operational modes. That is, the appropriate mechanical stress, i.e., tensile or compressive, can be applied to and/or removed from devices, i.e., NMOS and/or PMOS devices, based not only on their conductivity type, i.e., n-type or p-type, but also on their intended operational application, for example, analog/digital, low-voltage/high-voltage, high-speed/low-speed, noise-sensitive/noise-insensitive, etc. The result is that performance of individual devices is optimized based on the mode in which they operate. For example, mechanical stress can be applied to devices that operate in high-speed digital settings, while devices that operate in analog or RF signal settings, in which electrical noise such as flicker noise that may be introduced by applied stress may degrade performance, have no stress applied.
Abstract:
A semiconductor device includes a substrate having a fuse area and a device area; a fuse structure in an insulating layer of the fuse area, and a wire structure in the insulating layer of the device area. The fuse structure includes a fuse via, a fuse line electrically connected to a top end of the fuse via pattern and extending in a direction. The wire structure includes a wire via, a wire line electrically connected to a top end of the wire via and extending in the first direction. A width in the first direction of the fuse via is smaller than a width in the first direction of the wire via.
Abstract:
The program code, when executed by a processor, causes the processor to input fabrication data including a plurality of parameters associated with a semiconductor fabricating process to a framework to generate a first class for analyzing the fabrication data, to extract a first parameter targeted for analysis and a second parameter associated with the first parameter from the plurality of parameters and generate a second class for analyzing the first parameter as a sub class of the first class, to modify the first parameter and the second parameter into a data structure having a format appropriate to store in the second class, so as to be stored in the second class, to perform data analysis on the first parameter and the second parameter, to transform the first parameter and the second parameter into corresponding tensor data, and to input the tensor data to the machine learning model.