Abstract:
Exemplary embodiments provide methods and systems for fabricating a metal source-drain stressor in a MOS device channel having improved tensile stress. Aspects of exemplary embodiment include forming a recess in source and drain areas; forming a metal contact layer on surfaces of the recess that achieves low contact resistivity; forming a metallic diffusion barrier over the metal contact layer; forming a layer M as an intimate mixture of materials A and B that substantially fills the recess; capping the layer M with a capping layer so that layer M is fully encapsulated and the capping layer prevents diffusion of A and B; and forming a compound AxBy within the layer M via a thermal reaction resulting in a reacted layer M comprising the metal source-drain stressor.
Abstract:
A damascene interconnect structure may be formed by forming a trench in an ILD. A diffusion barrier may be deposited on trench surfaces, followed by a first liner material. The first liner material may be removed from a bottom surface of the trench. A second liner material may be directionally deposited on the bottom. A conductive seed layer may be deposited on the first and second liner materials, and a conductive material may fill in the trench. A CMP process can remove excess material from the top of the structure. A damascene interconnect may include a dielectric having a trench, a first liner layer arranged on trench sidewalls, and a second liner layer arranged on a trench bottom. A conductive material may fill the trench. The first liner material may have low wettability and the second liner material may have high wettability with respect to the conductive material.
Abstract:
A device including a stacked nanosheet field effect transistor (FET) may include a substrate, a first channel pattern on the substrate, a second channel pattern on the first channel pattern, a gate that is configured to surround portions of the first channel pattern and portions of the second channel pattern, and source/drain regions on opposing ends of the first channel pattern and second channel pattern. The first and second channel patterns may each include a respective plurality of nanosheets arranged in a respective horizontal plane that is parallel to a surface of the substrate. The nanosheets may be spaced apart from each other at a horizontal spacing distance between adjacent ones of the nanosheets. The second channel pattern may be spaced apart from the first channel pattern at a vertical spacing distance from the first channel pattern to the second channel pattern that is greater than the horizontal spacing distance.
Abstract:
Exemplary embodiments provide methods for fabricating a nanosheet structure suitable for field-effect transistor (FET) fabrication. Aspects of exemplary embodiment include selecting an active material that will serve as a channel material in the nanosheet structure, a substrate suitable for epitaxial growth of the active material, and a sacrificial material to be used during fabrication of the nanosheet structure; growing a stack of alternating layers of active and sacrificial materials over the substrate; and selectively etching the sacrificial material, wherein due to the properties of the sacrificial material, the selective etch results in remaining layers of active material having an aspect ratio greater than 1 and substantially a same thickness and atomic smoothness along the entire cross-sectional width of each active material layer perpendicular to current flow.
Abstract:
A semiconductor structure includes a first finFET device including a first fin, a first gate electrode structure on sidewalls and an upper surface of the first fin, a first channel region beneath the first gate electrode structure, and first source and drain regions in the first fin on opposite sides of the first channel region, and a second finFET device including a second fin, a second gate electrode structure on sidewalls and an upper surface of the second fin, a second channel region beneath the second gate electrode structure, and second source and drain regions in the second fin on opposite sides of the second channel region. The second gate electrode structure has a second physical gate length that is substantially the same as a first physical gate length of the first gate electrode structure, and the second finFET device has a second effective channel length that is different from a first effective channel length of the first gate electrode structure.
Abstract:
A field-effect transistor (FET) device having a modulated threshold voltage (Vt) includes a source electrode, a drain electrode, a channel region extending between the source electrode and the drain electrode, and a gate stack on the channel region. The gate stack includes an ultrathin dielectric dipole layer configured to shift the modulated Vt in a first direction, a high-k (HK) insulating layer on the ultrathin dielectric dipole layer, and a gate metal layer on the HK insulating layer configured to shift the modulated Vt in a second direction.
Abstract:
A semiconductor cell block includes a series of layers arranged in a stack. The layers include one or more first layers each having a first height and one or more second layers each having a second height. The second height is larger than the first height, and the second height is a non-integer multiple of the first height. The semiconductor cell block also includes a first semiconductor logic cell having a first cell height in one of the series of layers, and a second semiconductor logic cell having a second cell height in one of the series of layers. The second cell height is larger than the first cell height, and the second cell height is a non-integer value multiple of the first cell height.
Abstract:
A neuromorphic multi-bit digital weight cell configured to store a series of potential weights for a neuron in an artificial neural network. The neuromorphic multi-bit digital weight cell includes a parallel cell including a series of passive resistors in parallel and a series of gating transistors. Each gating transistor of the series of gating transistors is in series with one passive resistor of the series of passive resistors. The neuromorphic cell also includes a series of programming input lines connected to the series of gating transistors, an input terminal connected to the parallel cell, and an output terminal connected to the parallel cell.
Abstract:
A method of manufacturing a three-dimensional semiconductor device includes forming a bi-layer sacrificial stack on a top wafer and a bottom wafer each including a series of interconnects in a dielectric substrate. The bi-layer sacrificial stack includes a second sacrificial layer on a first sacrificial layer. The method also includes selectively etching the second sacrificial layers to form a first pattern of projections on the top wafer and a second pattern of projections on the bottom wafer. The first pattern of projections is configured to mesh with the second pattern of projections. The method also includes positioning the top wafer on the bottom wafer and releasing the top wafer such that engagement between the first pattern of projections and the second pattern of projections self-aligns the plurality of interconnects of the top wafer with the plurality of interconnects of the bottom wafer within a misalignment error.
Abstract:
A semiconductor device includes a series of metal routing layers and a complementary pair of planar field-effect transistors (FETs) on an upper metal routing layer of the metal routing layers. The upper metal routing layer is M3 or higher. Each of the FETs includes a channel region of a crystalline material. The crystalline material may include polycrystalline silicon. The upper metal routing layer M3 or higher may include cobalt.