Abstract:
In an example embodiment a method of processing a substrate includes forming a plasma in a plasma chamber and using charged grids to form an ion beam and to thereby accelerate ions from the plasma chamber to a processing chamber. An auxiliary heater, which may be a radiant heater, may be used to pre-heat a grid to a saturation state to accelerate heating and concomitant distortion of the grid. A process recipe may pre-compensate for distortion of the grid.
Abstract:
In a method of manufacturing a semiconductor device, first to third active fins are formed on a substrate. Each of the first to third active fins extends in a first direction, and the second active fin, the first active fin, and the third active fin are disposed in this order in a second direction crossing the first direction. The second active fin is removed using a first etching mask covering the first and third active fins. The third active fin is removed using a second etching mask covering the first active fin and a portion of the substrate from which the second active fin is removed. A first gate structure is formed on the first active fin. A first source/drain layer is formed on a portion of the first active fin adjacent the first gate structure.
Abstract:
In a semiconductor device, parallel first and second conductive lines having a unit width extend from a memory cell region into a connection region. A trim region in the connection region includes pads respectively connected to the first and second conductive lines but are separated by a width much greater than the unit width.
Abstract:
In a method of manufacturing a semiconductor device, first to third active fins are formed on a substrate. Each of the first to third active fins extends in a first direction, and the second active fin, the first active fin, and the third active fin are disposed in this order in a second direction crossing the first direction. The second active fin is removed using a first etching mask covering the first and third active fins. The third active fin is removed using a second etching mask covering the first active fin and a portion of the substrate from which the second active fin is removed. A first gate structure is formed on the first active fin. A first source/drain layer is formed on a portion of the first active fin adjacent the first gate structure.
Abstract:
In an example embodiment a method of processing a substrate includes forming a plasma in a plasma chamber and using charged grids to form an ion beam and to thereby accelerate ions from the plasma chamber to a processing chamber. An auxiliary heater, which may be a radiant heater, may be used to pre-heat a grid to a saturation state to accelerate heating and concomitant distortion of the grid. A process recipe may pre-compensate for distortion of the grid.
Abstract:
Provided is a semiconductor device. The semiconductor device includes a conductive pattern disposed on a semiconductor substrate. First and second conductive lines disposed on the conductive pattern and located at the same level as each other, are provided. An isolation pattern is disposed between the first and second conductive lines. A first vertical structure passing through the first conductive line and conductive pattern is provided. A second vertical structure passing through the second conductive line and conductive patterns is provided. An auxiliary pattern passing through the conductive pattern and in contact with the isolation pattern is provided.
Abstract:
In a method of manufacturing a semiconductor device, first to third active fins are formed on a substrate. Each of the first to third active fins extends in a first direction, and the second active fin, the first active fin, and the third active fin are disposed in this order in a second direction crossing the first direction. The second active fin is removed using a first etching mask covering the first and third active fins. The third active fin is removed using a second etching mask covering the first active fin and a portion of the substrate from which the second active fin is removed. A first gate structure is formed on the first active fin. A first source/drain layer is formed on a portion of the first active fin adjacent the first gate structure.
Abstract:
In a method of manufacturing a semiconductor device, first to third active fins are formed on a substrate. Each of the first to third active fins extends in a first direction, and the second active fin, the first active fin, and the third active fin are disposed in this order in a second direction crossing the first direction. The second active fin is removed using a first etching mask covering the first and third active fins. The third active fin is removed using a second etching mask covering the first active fin and a portion of the substrate from which the second active fin is removed. A first gate structure is formed on the first active fin. A first source/drain layer is formed on a portion of the first active fin adjacent the first gate structure.
Abstract:
In an example embodiment a method of processing a substrate includes forming a plasma in a plasma chamber and using charged grids to form an ion beam and to thereby accelerate ions from the plasma chamber to a processing chamber. An auxiliary heater, which may be a radiant heater, may be used to pre-heat a grid to a saturation state to accelerate heating and concomitant distortion of the grid. A process recipe may pre-compensate for distortion of the grid.
Abstract:
A method of manufacturing a semiconductor device, the method including forming a tunnel insulating layer on an upper surface of a substrate, forming gate patterns on an upper surface of the tunnel insulating layer, forming capping layer patterns on sidewalls of the gate patterns and on the upper surface of the tunnel insulating layer, etching a portion of the tunnel insulating layer that is not covered with the gate patterns or the capping layer patterns to form a tunnel insulating layer pattern, and forming a first insulating layer on the upper surface of the substrate to cover the gate patterns, the capping layer patterns, and the tunnel insulating layer pattern, wherein the first insulating layer has an air gap between the capping layer patterns.