Abstract:
An inventive semiconductor device includes: a semiconductor chip including an integrated circuit; a plurality of electrode pads provided on the semiconductor chip and connected to the integrated circuit; a rewiring to which the electrode pads are electrically connected together, the rewiring being exposed on an outermost surface of the semiconductor chip and having an exposed surface area greater than the total area of the electrode pads; and a resin package which seals the semiconductor chip.
Abstract:
A semiconductor device includes: a semiconductor element including a first electrode; a conductive member including a first bonding part facing the first electrode; a bonding layer interposed between the first electrode and the first bonding part; and a regulator bonded to at least one of the first electrode and the first bonding part. The regulator faces the bonding layer in a direction orthogonal to a thickness direction of the semiconductor element.
Abstract:
A semiconductor device has a plurality of electronic components mounted on an insulating substrate formed with a metal layer, and electrically connected to each other or to the metal layer; a positioning wire member having a predetermined diameter and a predetermined length, and bonded to each of the plurality of electronic components or to the metal layer; a lead frame disposed to bridge and electrically connect the plurality of electronic components to each other or between the metal layer and the electronic components; and an opening having a size capable of inserting the wire member therethrough formed to penetrate through the lead frame, to join the lead frame to each of the electronic components or the metal layer at a predetermined position therein. The lead frame is positioned on the insulating substrate by inserting the wire member into the opening.
Abstract:
An inventive semiconductor device includes: a semiconductor chip including an integrated circuit; a plurality of electrode pads provided on the semiconductor chip and connected to the integrated circuit; a rewiring to which the electrode pads are electrically connected together, the rewiring being exposed on an outermost surface of the semiconductor chip and having an exposed surface area greater than the total area of the electrode pads; and a resin package which seals the semiconductor chip.
Abstract:
An inventive semiconductor device includes: a semiconductor chip including an integrated circuit; a plurality of electrode pads provided on the semiconductor chip and connected to the integrated circuit; a rewiring to which the electrode pads are electrically connected together, the rewiring being exposed on an outermost surface of the semiconductor chip and having an exposed surface area greater than the total area of the electrode pads; and a resin package which seals the semiconductor chip.
Abstract:
There is provided a semiconductor module package including: a base substrate formed by mounting one or more first semiconductor devices thereon; a lead frame formed on a top surface of the first semiconductor device and having an inlet formed to inject a solder paste; and spaces inserted between the first semiconductor device and the lead frame to form a separation space, wherein the solder paste is filled in the separation space.
Abstract:
There is provided a semiconductor module package including: a base substrate formed by mounting one or more first semiconductor devices thereon; a lead frame formed on a top surface of the first semiconductor device and having an inlet formed to inject a solder paste; and spaces inserted between the first semiconductor device and the lead frame to form a separation space, wherein the solder paste is filled in the separation space.
Abstract:
A semiconductor device has a plurality of electronic components mounted on an insulating substrate formed with a metal layer, and electrically connected to each other or to the metal layer; a positioning wire member having a predetermined diameter and a predetermined length, and bonded to each of the plurality of electronic components or to the metal layer; a lead frame disposed to bridge and electrically connect the plurality of electronic components to each other or between the metal layer and the electronic components; and an opening having a size capable of inserting the wire member therethrough formed to penetrate through the lead frame, to join the lead frame to each of the electronic components or the metal layer at a predetermined position therein. The lead frame is positioned on the insulating substrate by inserting the wire member into the opening.