Abstract:
A method for fabricating a semiconductor module includes: bonding a semiconductor substrate onto a first insulating resin layer; dicing the semiconductor substrate into a plurality of individual semiconductor devices; widening the spacings between the adjacent semiconductor devices by expanding the first insulating resin layer in a biaxially stretched manner; fixing the plurality of semiconductor devices to a flat sheet, with a second insulating resin layer held between the plurality of semiconductor devices and the flat sheet, and removing the first insulating resin layer; stacking the plurality of semiconductor devices, a third insulating resin layer, and a metallic plate, in this order, so as to form a laminated body having electrodes by which to electrically connect the device electrodes to the metallic plate; forming a wiring layer by selectively removing the metallic plate and forming a plurality of semiconductor modules; and separating the semiconductor modules into individual units.
Abstract:
A semiconductor package a first package unit comprising a semiconductor chip; and a redistribution structure on the first package unit, wherein the redistribution structure comprises a plurality of wiring lines and a plurality of insulating layers on the plurality of wiring lines, wherein the plurality of wiring lines comprise first subset including a plurality of outermost wiring lines and a second subset, wherein a vertical distance between the plurality of outermost wiring lines and the first package unit is greater than a vertical distance between the second subset of the plurality of wiring lines and the first package unit, a respective surface roughness of each of the plurality of outermost wiring lines is different, and the respective surface roughness of each of the plurality of outermost wiring lines is based on a respective width of each of the plurality of outermost wiring lines in a horizontal direction.
Abstract:
Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a substrate having a surface including first conductive contacts and second conductive contacts, wherein the first conductive contacts have a first thickness and the second conductive contacts have a second thickness different than the first thickness; a first microelectronic component having third conductive contacts, wherein respective ones of the third conductive contacts are coupled to respective ones of the first conductive contacts by first interconnects, wherein the first interconnects include solder having a thickness between 2 microns and 35 microns; and a second microelectronic component having fourth conductive contact, wherein respective ones of the fourth conductive contacts are coupled to respective ones of the second conductive contacts by second interconnects, wherein the second interconnects include solder having a thickness between 5 microns and 50 microns.
Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include a die embedded in a coreless substrate, wherein a mold compound surrounds the die, and wherein the die comprises TSV connections on a first side and C4 pads on a second side of the die, a dielectric material on a first side and on a second side of the mold compound; and interconnect structures coupled to the C4 pads and to the TSV pads. Embodiments further include forming packaging structures wherein multiple dies are fully embedded within a BBUL package without PoP lands.
Abstract:
There are provided a power semiconductor module and a manufacturing method thereof, the power semiconductor module including: a lead frame; a base substrate including a circuit wiring formed on an insulating layer thereof; a plurality of power semiconductor devices disposed to contact the circuit wiring; and a multilayer substrate formed by stacking a plurality of substrates and electrically connecting the power semiconductor devices and the lead frame to one another using a connection line formed therein and having conductivity.
Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include a die embedded in a coreless substrate, wherein a mold compound surrounds the die, and wherein the die comprises TSV connections on a first side and C4 pads on a second side of the die, a dielectric material on a first side and on a second side of the mold compound; and interconnect structures coupled to the C4 pads and to the TSV pads. Embodiments further include forming packaging structures wherein multiple dies are fully embedded within a BBUL package without PoP lands.
Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include a die embedded in a coreless substrate, wherein a mold compound surrounds the die, and wherein the die comprises TSV connections on a first side and C4 pads on a second side of the die, a dielectric material on a first side and on a second side of the mold compound; and interconnect structures coupled to the C4 pads and to the TSV pads. Embodiments further include forming packaging structures wherein multiple dies are fully embedded within a BBUL package without PoP lands.
Abstract:
A method for fabricating a semiconductor module includes: bonding a semiconductor substrate onto a first insulating resin layer; dicing the semiconductor substrate into a plurality of individual semiconductor devices; widening the spacings between the adjacent semiconductor devices by expanding the first insulating resin layer in a biaxially stretched manner; fixing the plurality of semiconductor devices to a flat sheet, with a second insulating resin layer held between the plurality of semiconductor devices and the flat sheet, and removing the first insulating resin layer; stacking the plurality of semiconductor devices, a third insulating resin layer, and a metallic plate, in this order, so as to form a laminated body having electrodes by which to electrically connect the device electrodes to the metallic plate; forming a wiring layer by selectively removing the metallic plate and forming a plurality of semiconductor modules; and separating the semiconductor modules into individual units.
Abstract:
The present disclosure provides a fan-out chip packaging structure and a method to fabricate the fan-out chip package. The fan-out chip packaging structure includes a first redistribution layer, a second redistribution layer, metal connecting posts, a semiconductor chip, a first packaging layer, a stacked chip package, a passive element, a filling layer, a metal bumps, and a second packaging layer. By means of the present disclosure, various chips having different functions can be integrated into one package structure, thereby improving the integration level of the fan-out packaging structure. By means of the first redistribution layer, the second redistribution layer, and the metal connecting posts, a three-dimensional vertically stacked package is achieved. In this way, the integration level of the packaging structure can be effectively improved, and the conduction path can be effectively shortened, thereby reducing power consumption, increasing the transmission speed, and increasing the data processing capacity.
Abstract:
A process for manufacturing semiconductor packages is provided, that includes drilling blind apertures in a reconstituted wafer, adhering a dry film resist on the wafer over the apertures, and patterning the film to expose a space around each of the apertures. The apertures and spaces are then filled with conductive paste by wiping a quantity of the paste across a surface of the film so that paste is forced into the spaces and apertures. The spaces around the apertures define contact pads whose thickness is constrained by the thickness of the film, preferably to about 10 μm or less. To prevent paste from trapping air pockets in the apertures, the wiping process can be performed in a chamber from which much or all of the air has been evacuated. After curing the paste, the wafer is thinned from the back to expose the cured paste in the apertures.