Abstract:
The present disclosure relates to a brazed superabrasive assemblies and method of producing brazed superabrasive assemblies. The brazed superabrasive assemblies may include a plurality of braze alloy layers that are positioned opposite a stress relieving layer. The stress relieving layer may have a solidus temperature that is greater than a solidus temperature of the plurality of braze alloy layers.
Abstract:
A wafer holder for a semiconductor manufacturing apparatus that has a high heat conductivity and includes a conductive layer such as heater circuit pattern which can be formed with a high precision pattern, a method of manufacturing the wafer holder, and a semiconductor manufacturing apparatus having therein the wafer holder are provided. On a surface of a sintered aluminum nitride piece, paste containing metal particles is applied and fired to form a heater circuit pattern as a conductive layer. Between the surface of the sintered aluminum nitride piece having the heater circuit pattern formed thereon and another sintered aluminum nitride piece, a glass layer is provided as a joint layer to be heated for joining the sintered aluminum nitride pieces together.
Abstract:
A wafer holder for a semiconductor manufacturing apparatus that has a high heat conductivity and includes a conductive layer such as heater circuit pattern which can be formed with a high precision pattern, a method of manufacturing the wafer holder, and a semiconductor manufacturing apparatus having therein the wafer holder are provided. On a surface of a sintered aluminum nitride piece, paste containing metal particles is applied and fired to form a heater circuit pattern as a conductive layer. Between the surface of the sintered aluminum nitride piece having the heater circuit pattern formed thereon and another sintered aluminum nitride piece, a glass layer is provided as a joint layer to be heated for joining the sintered aluminum nitride pieces together.
Abstract:
A method for producing a ceramic-metal composite substrate, which comprises integrally bonding together a ceramic base member, metal members of a material selected from the group consisting of copper and alloys thereof, and a constraining member to be bonded to the metal member, wherein improvement comprises: bringing the metal member into close contact with ceramic base member through a thin film layer having a thickness of from 0.1 .mu.m to 3 .mu.m and containing therein an active metal; and heating the combination of the ceramic base member, the metal member, and the constraining member in an atmosphere which is difficult to react with the active metal, to a temperature ranging from a melting point of an alloy to be formed of the metal member and the active metal to a temperature below the melting point of the metal member, while applying a pressing force to combination in the direction of its thickness, thereby realizing the integral bonding.
Abstract:
A layer of titanium carbosilicide Ti.sub.3 SiC.sub.2 on a silicon carbide surface polished for making a joint makes it possible to join silicon carbide bodies together in a hot pressing procedure and obtaining a joint strength comparable to the strength of the silicon carbide material. Such a layer on silicon carbide also makes possible brazed juoints with steel alloy or nickel based alloy parts. The layer may be applied directly by a powder dispersion in a volatile but viscous glycol or by sputtering or else the layer can be made in place from a powder mixture of components, especially TiC.sub.0,8 and Tisi.sub.2 (5:1) or a titanium layer of a thickness in the range of 1 to 3 .mu.m that reacts with the silicon carbide surface. When silicon carbide parts are joined together, the heating up to make the joint also serves to convert a titanium layer into titanium carbosilicide. When silicon carbide is to be joined with metal, a preliminary heating step is necessary to at first convert a powder mixture or a titanium layer on the silicon carbide surface to Ti.sub.3 SiC.sub.2. Alternatively a Ti.sub.3 SiC.sub. 2 surface layer can be formed by a sputtering process. The Ti.sub.3 SiC.sub.2 layer favors brazing of the metal part to the silicon carbide surface as treated. The heating requires reaching a temperature in the region from 1200.degree. to 1600.degree. C. for periods between a half hour to about three hours in the presence of a reducing protective gas.
Abstract translation:在用于制造接头的碳化硅表面上的碳化硅硅钛酸Ti3SiC2层可以在热压步骤中将碳化硅体连接在一起,并获得与碳化硅材料的强度相当的接合强度。 这种碳化硅层也可以用钢合金或镍基合金部件进行铜焊接。 该层可以通过粉末分散体直接施加在挥发性但粘稠的二醇中或通过溅射,或者可以从组分的粉末混合物,特别是TiC0,8和Tisi2(5:1)的粉末混合物或钛层 厚度在1至3μm的范围内,与碳化硅表面反应。 当碳化硅部分接合在一起时,加热至接合还用于将钛层转化为碳硅化钛。 当碳化硅与金属接合时,需要预加热步骤,以便首先将碳化硅表面上的粉末混合物或钛层转化为Ti 3 SiC 2。 或者,可以通过溅射工艺形成Ti 3 SiC 2表面层。 Ti3SiC2层有利于金属部分对被处理的碳化硅表面的钎焊。 加热需要在还原保护气体的存在下,在1200℃至1600℃的温度范围内达到半小时至约3小时。
Abstract:
A method of forming a 360.degree. ceramic permanent magnet by utilizing a hot isostatic pressing technique on a ceramic preform paterial cylindrically formed and placed inside a deformable metal housing having an inner diameter that is approximately the same but only slightly larger than the outer diameter of the preform. A solid steel mandrel is provided in the center diameter of the hollow cylindrical preform. Crystal alignment and densification of the ceramic material is achieved by using the hot isostatic pressing technique applied to the outside of the housing, preform and mandrel assembly.
Abstract:
Disclosed is a method of bonding metals to substrates such as ceramics or metals. A bonding agent forms a eutectic alloy with the metal to provide bonding. Several methods of supplying the bonding agent to the system are disclosed. However, regardless of which method of introducing the bonding agent into the system is employed, the quantity of the bonding agent is carefully controlled so that the compound in the region of the bond is hypoeutectic. To form the bond, the metal and the substrate are placed adjacent each other and the bonding agent is introduced into the system. The system is then heated to a temperature between the eutectic temperature and the melting point of the metal for a preselected time. The system is then cooled to form a bond. The heating is carried out in an inert atmosphere or a vacuum.
Abstract:
A method of processing greensheets for use as microelectronic substrates comprises providing a greensheet having a width, a length and a thickness, bonding to the greensheet, within the greensheet width and length, a frame adapted to constrain movement of the greensheet within the frame, processing the greensheet and bonded frame, and removing the frame from the processed greensheet. The processing of the greensheet and bonded frame may include punching vias in the greensheet, filling the vias in the greensheet with conductive material, patterning the greensheet by applying conductive paste to the vias and greensheet surface, stacking the patterned greensheet and bonded frame with at least one other patterned greensheet and bonded frame, and laminating the greensheets. The frame is preferably removed from the processed greensheet after laminating the greensheets, and before the laminated greensheets are subsequently sintered. The bonding of the frame to the greensheet may be by lamination or by an adhesive, or by other means. Preferably, the frame has a thickness less than the greensheet thickness. The frame preferably has a plurality of members subdividing the greensheet into a plurality of areas, with each area being completely surrounded by frame members. The frame may be applied to one side of the greensheet, and pressed into the greensheet side such that that the frame and greensheet side are substantially coplanar.
Abstract:
A method of processing greensheets for use as microelectronic substrates comprises providing a greensheet having a width, a length and a thickness, bonding to the greensheet, within the greensheet width and length, a frame adapted to constrain movement of the greensheet within the frame, processing the greensheet and bonded frame, and removing the frame from the processed greensheet. The processing of the greensheet and bonded frame may include punching vias in the greensheet, filling the vias in the greensheet with conductive material, patterning the greensheet by applying conductive paste to the vias and greensheet surface, stacking the patterned greensheet and bonded frame with at least one other patterned greensheet and bonded frame, and laminating the greensheets. The frame is preferably removed from the processed greensheet after laminating the greensheets, and before the laminated greensheets are subsequently sintered. The bonding of the frame to the greensheet may be by lamination or by an adhesive, or by other means. Preferably, the frame has a thickness less than the greensheet thickness. The frame preferably has a plurality of members subdividing the greensheet into a plurality of areas, with each area being completely surrounded by frame members. The frame may be applied to one side of the greensheet, and pressed into the greensheet side such that the frame and greensheet side are substantially coplanar.
Abstract:
A method of processing greensheets for use as microelectronic substrates comprises providing a greensheet having a width, a length and a thickness, bonding to the greensheet, within the greensheet width and length, a frame adapted to constrain movement of the greensheet within the frame, processing the greensheet and bonded frame, and removing the frame from the processed greensheet. The processing of the greensheet and bonded frame may include punching vias in the greensheet, filling the vias in the greensheet with conductive material, patterning the greensheet by applying conductive paste to the vias and greensheet surface, stacking the patterned greensheet and bonded frame with at least one other patterned greensheet and bonded frame, and laminating the greensheets. The frame is preferably removed from the processed greensheet after laminating the greensheets, and before the laminated greensheets are subsequently sintered. The bonding of the frame to the greensheet may be by lamination or by an adhesive, or by other means. Preferably, the frame has a thickness less than the greensheet thickness. The frame preferably has a plurality of members subdividing the greensheet into a plurality of areas, with each area being completely surrounded by frame members. The frame may be applied to one side of the greensheet, and pressed into the greensheet side such that that the frame and greensheet side are substantially coplanar.