Abstract:
The invention generally provides systems and methods for producing a chemical product. In certain embodiments, the invention provides systems that include a chemical product production unit. The chemical production unit includes a plurality of microfluidic modules configured to be fluidically coupled to each other in an arrangement that produces a chemical product from an input of a plurality of starting reagents that react with each other due to conditions within the plurality of microfluidic modules through which the starting reagents flow. The system also includes a droplet dispenser fluidically coupled to the chemical product production unit that forms and dispenses droplets of the chemical product.
Abstract:
The automated synthesis of clinically relevant amounts of 16β-18F-fluoro-5α-dihydrotestosterone (18F-FDHT) using a commercially available radiosynthesizer. Synthesis was performed in 90 minutes with a decay-corrected radiochemical yield of 29±5%. The specific activity was 4.6 Ci/μmol (170 GBq/μmol) at end of formulation with a starting activity of 1.0 Ci (37 GBq). The formulated 18F-FDHT yielded sufficient activity for multiple patient doses and passed all quality control tests required for routine clinical use.
Abstract:
The invention relates to a method for the preparation of radiochemical compounds using a device having at least a reaction module, a dosing module, and a storage module, wherein the reaction module has at least one reaction vessel having a closable opening through which substances needed for the preparation of a predetermined radiochemical compound can be introduced into the reaction vessel of the reaction module and through which the prepared radiochemical compound can be removed from the reaction vessel of the reaction module; the dosing module has at least one pipetting head which can be moved relative to the storage module and the reaction module and in x, y, and z directions and also has at least one dosing unit; and at least one reservoir for one of the substances needed for the preparation of the respective radiochemical compound is formed in the storage module. Substances needed for the preparation of the respective radiochemical compound are introduced into the reaction vessel of the reaction module by means of dosing units, wherein the dosing units can be moved via a pipetting head in x, y directions or in x, y, and z directions.
Abstract:
The invention relates to a device for the preparation of radiochemical compounds. It is provided that the device comprises at least a reaction module, a dosing module, and a storage module, wherein the reaction module has at least one reaction vessel having a closable opening through which substances needed for the preparation of a predetermined radiochemical compound can be introduced into the reaction vessel of the reaction module and through which the prepared radiochemical compound can be removed from the reaction vessel of the reaction module; the dosing module has at least one pipetting head which can be moved relative to the storage module and the reaction module and in x, y, and z directions and also has at least one dosing unit; and at least one reservoir for one of the substances needed for the preparation of the respective radiochemical compound is formed in the storage module.
Abstract:
The present invention relates to an automatic system for synthesizing iodine-123 meta-iodobenzylguanidine (123I-MIBG), which comprises a first reactor for subjecting radioactive iodine-containing sodium iodide and meta-iodobenzylguanidine (MIBG) sulfate to an iodine-iodine exchange reaction to obtain radioactive iodine labeled MIBG; a purification unit for purifying the iodine labeled MIBG; and a second reactor for substituting a solvent used in purification with a phosphate buffer to obtain a phosphate solution containing 123I-MIBG. The present invention also relates to an automatic device for dispensing 123I-MIBG, which comprises the automatic system for synthesizing 123I-MIBG, a radioactivity measuring unit, and a dispensing and packing unit.
Abstract:
Described herein are automated, integrated microfluidic device comprising a chemical reaction chip comprising for performing chemical reaction, a microscale column integrated with the chip and configured for liquid flow from the column to at least one flow channel, and wherein the fluid flow into the column is controlled by on-chip valves; and comprising at least two on-chip valves for controlling fluid flow in the microfluidic device.
Abstract:
A low-dispersion methodology for designing microfabricated conduction channels for on-chip electrokinetic-based systems is presented. The technique relies on trigonometric relations that apply for ideal electrokinetic flows, allowing faceted channels to be designed on chips using common drafting software and a hand calculator. Flows are rotated and stretched along the abrupt interface between adjacent regions with differing permeability. Regions bounded by interfaces form flow “prisms” that can be combined with other designed prisms to obtain a wide range of turning angles and expansion ratios while minimizing dispersion. Designs are demonstrated using two-dimensional numerical solutions of the Laplace equation.
Abstract:
Modular microfluidic systems includes a plurality of microfluidic modules, each capable of performing fluidic operations including, but not limited to, filtering, splitting, regulating pressure, mixing, metering, reacting, diverting, heating, cooling, and condensing are provided. The microfluidic modules are polymeric, stencil-based structures adapted to be coupled in sequence for performing biological or chemical synthesis, including, but not limited to, chemical and biological syntheses of organic, polymer, inorganic, oligonucleotide, peptide, protein, bacteria, and enzymatic products.
Abstract:
A process for producing a mass transfer device is provided which enables packing of a packing material uniformly in a flow channel, and transfers a specified substance by flowing a fluid containing the specified substance through a flow channel on a substrate. A mass transfer device produced by the process is also provided. The process for producing a mass transfer device comprises steps of preparing a substrate, forming a flow channel on the surface of the substrate, applying a liquid drop composed of a packing material and a liquid medium, and packing the packing material in the flow channel by removing the liquid medium.