Abstract:
Disclosed is a semiconductor device for outputting an output signal with a given phase held relative to an external clock despite a difference in characteristic, a change in temperature, and a fluctuation in supply voltage. The semiconductor device comprises an input circuit for inputting the external clock and outputting a reference signal, an output circuit for receiving an output timing signal and outputting an output signal according to the timing of the output timing signal, and an output timing control circuit for controlling the output timing so that the output signal exhibits a given phase relative to the external clock. The output timing control circuit includes a delay circuit for delaying the reference signal by a specified magnitude and generating an output timing signal, a phase comparison circuit for comparing the phase of the output timing signal with the phase of the reference signal, and a delay control circuit for specifying the magnitude of a delay to be produced by the delay circuit according to the result of comparison performed by the phase comparison circuit.
Abstract:
Disclosed is a semiconductor device for outputting an output signal with a given phase held relative to an external clock despite a difference in characteristic, a change in temperature, and a fluctuation in supply voltage. The semiconductor device comprises an input circuit for inputting the external clock and outputting a reference signal, an output circuit for receiving an output timing signal and outputting an output signal according to the timing of the output timing signal, and an output timing control circuit for controlling the output timing so that the output signal exhibits a given phase relative to the external clock. The output timing control circuit includes a delay circuit for delaying the reference signal by a specified magnitude and generating an output timing signal, a phase comparison circuit for comparing the phase of the output timing signal with the phase of the reference signal, and a delay control circuit for specifying the magnitude of a delay to be produced by the delay circuit according to the result of comparison performed by the phase comparison circuit.
Abstract:
A semiconductor memory device, which refreshes memory cells to retain data, has a first refresh mode and a second refresh mode. The first refresh mode is a mode for refreshing all of the memory cells, and the second refresh mode is a mode for refreshing a part of the memory cells. By refreshing only designated areas where data must be retained, power consumption in a refresh operation can be reduced, drastically cutting power consumption in a power-down mode.
Abstract:
The present invention omits a variable delay circuit (10 in FIG. 1) inside a DLL circuit, and instead, creates a timing synchronization circuit, which generates a second reference clock. The timing synchronization circuit shifts the phase of a first reference clock generated by a frequency divider to the timing of a timing signal generated from the other variable delay circuit so that the second reference clock matches to the timing signal. Then, a phase comparator compares the divided first reference clock to a variable clock that delays the second reference clock, and controls the delay time of the variable delay circuit so that both clocks are in phase. As a result, one variable delay circuit can be omitted, and a DLL circuit that uses a divided clock can be configured.
Abstract:
A semiconductor system includes at least one logic chip and at least one memory chip arranged such that one side of the at least one memory chip faces one side of the at least one logic chip. The semiconductor system further includes first input/output nodes, provided for the at least one logic chip, for data transfer with an adjacent memory chip, second input/output nodes, provided for the at least one memory chip, for data transfer with an adjacent logic chip, and a package housing the at least one logic chip and the at least one memory chip, wherein the first input/output nodes are arranged along the one side of the at least one logic chip, and the second input/output nodes are arranged along the one side of the at least one memory chip.
Abstract:
Disclosed is a semiconductor device for outputting an output signal with a given phase held relative to an external clock despite a difference in characteristic, a change in temperature, and a fluctuation in supply voltage. The semiconductor device comprises an input circuit for inputting the external clock and outputting a reference signal, an output circuit for receiving an output timing signal and outputting an output signal according to the timing of the output timing signal, and an output timing control circuit for controlling the output timing so that the output signal exhibits a given phase relative to the external clock. The output timing control circuit includes a delay circuit for delaying the reference signal by a specified magnitude and generating an output timing signal, a phase comparison circuit for comparing the phase of the output timing signal with the phase of the reference signal, and a delay control circuit for specifying the magnitude of a delay to be produced by the delay circuit according to the result of comparison performed by the phase comparison circuit.
Abstract:
A semiconductor memory device, which refreshes memory cells to retain data, has a first refresh mode and a second refresh mode. The first refresh mode is a mode for refreshing all of the memory cells, and the second refresh mode is a mode for refreshing a part of the memory cells. By refreshing only designated areas where data must be retained, power consumption in a refresh operation can be reduced, drastically cutting power consumption in a power-down mode.
Abstract:
A semiconductor memory device includes memory cells, word lines connected to the memory cells, bit lines connected to the memory cells, and a first circuit which resets the bit lines to a reset potential which is based on data read in a previous read cycle.
Abstract:
A system and a semiconductor device for realizing such a system are disclosed. The system uses at least a semiconductor device for retrieving an input signal in synchronism with an internal clock generated from an external clock, the input signal remaining effectively in synchronism with the external clock. Even in the case where a phase difference develops between a clock and a signal at the receiving end, or even in the case where a phase difference develops between a clock input circuit and other signal input circuits in the semiconductor device at the receiving end, data can be transferred at high speed. Each input circuit of the semiconductor device at the receiving end includes an input timing adjusting circuit for adjusting the phase of the clock applied to the input circuit in such a manner that the input circuit retrieves the input signal in an effective and stable state. In the case where the skew between the input signals is small as compared with the skew between the input signals and the clock, an input timing adjusting circuit is shared by a plurality of the input circuits.
Abstract:
A system and a semiconductor device for realizing such a system are disclosed. The system uses at least a semiconductor device for retrieving an input signal in synchronism with an internal clock generated from an external clock, the input signal remaining effectively in synchronism with the external clock. Even in the case where a phase difference develops between a clock and a signal at the receiving end, or even in the case where a phase difference develops between a clock input circuit and other signal input circuits in the semiconductor device at the receiving end, data can be transferred at high speed. Each input circuit of the semiconductor device at the receiving end includes an input timing adjusting circuit for adjusting the phase of the clock applied to the input circuit in such a manner that the input circuit retrieves the input signal in an effective and stable state. In the case where the skew between the input signals is small as compared with the skew between the input signals and the clock, an input timing adjusting circuit is shared by a plurality of the input circuits.