Abstract:
A semiconductor memory device uses a wave pipeline system which can reduce a power consumption by reducing a current for charging a data bus between a memory core part and an output circuit. A single line data bus transmits read data output from the memory core part. A data bus drive circuit outputs the read read data to send to the single data bus. Each of a plurality of data latch circuits has a data input terminal connected to the data bus. A data input control circuit inputs the read data which is serially transmitted on the data bus to the data latch circuits in parallel in response to an operation of the data bus drive circuit. A data output control circuit outputs the latched read data in an order of latching by sequentially selecting outputs of the data latch circuits.
Abstract:
A semiconductor or memory device has a decoder circuit for decoding a plurality of external address signals. The external address signals include first and second external address signals. A first address buffer receives the first external address signals and outputs first internal address signals to first address lines. A second address buffer receives the second external address signals and outputs second internal address signals to second address lines. First predecoders have input terminals connected to the first address lines, and output first predecode signals to first predecode lines. Second predecoders have input terminals connected to the second address lines and output second predecode signals to second predecode lines. Main decoders have input terminals connected to the first predecode lines and the second predecode lines and output decode signals. The number of the first external address signals are greater than the number of the second external address signals. The second predecoders and the second predecode lines are provided at least in double in such a manner that inputs of the main decoders to be connected to each of the second predecode lines are equal in number to inputs of the main decoders to be connected to each of the first predecode lines. It is possible to shorten the transition time of predecode signals because of the same capacitive load of the predecoder circuit.
Abstract:
A semiconductor circuit has a first transistor, a second transistor, a third transistor, and a fourth transistor. The first and fourth transistors are a first conduction type, and the second and third transistors are a second conduction type opposite to the first conduction type. The semiconductor circuit employs a first power supply line for supplying a first voltage, a second power supply line for supplying a second voltage, and a third power supply line for supplying a third voltage outside of the range determined by the first voltage and the second voltage. The first, second, and third transistors are connected in series between the second power supply line and the third power supply line, and the fourth transistor is connected between an input terminal and a control electrode of the first transistor.
Abstract:
A semiconductor device having a dynamic circuit and a static circuit, wherein a clock signal, in synchronization with the operation of the static circuit, initiates the operation of the dynamic circuit. A delay circuit of a static type is provided to delay the clock signal and generate a delayed clock signal. The delayed clock signal initiates operation of one stage of the dynamic circuit. As a result, the final-operation timing of the dynamic circuit is substantially controlled by the delayed clock signal, thereby matching the operation of the dynamic circuit with the operation of the static circuit, regardless of the power supply voltage.
Abstract:
A semiconductor integrated circuit device includes a reference voltage generating circuit outputting a reference voltage from a step-up voltage, a step-up circuit stepping up the reference voltage within a range lower than an external power supply voltage and thus outputting the above step-up voltage, a step-down circuit stepping down the external power supply voltage and thus outputting a step-down voltage equal to the reference voltage, and an internal circuit receiving, as a power supply voltage thereof, the step-down voltage.
Abstract:
A semiconductor memory device includes a plurality of banks each having a memory cell array and sense amplifiers, a data input/output circuit and an address circuit. A first part of the device receives control signals from an outside of the semiconductor memory device and generates a refresh signal therefrom. A second part generates bank select signals in response to the refresh signal, the bank select signals being used to select the plurality of banks. A third part receives the bank select signals and generating latch enable signals therefrom, the latch enable signals driving the sense amplifiers provided in the plurality of banks. A refresh operation is carried out by activating the sense amplifiers by using the latch enable signals.
Abstract:
The present invention relates to a semiconductor unit including a delay circuit used for an address transition detecting circuit in a storage, wherein a change of an address is detected and, accordingly, an access address in a memory cell is altered. The present invention aims at ensuring extending an address signal even though that of a short pulse width is provided, and at outputting an address transition detection signal of a predetermined pulse width, thereby stabilizing the operation of the circuit and improving its reliability. The present invention includes a second address extending circuit having a complementary transistor circuit, a capacitor connected to the output part of the complementary transistor circuit, and a resistor serially connected between a pair of complementary transistors. A signal generating circuit for outputs an address transition detection signal in response to a non-inverted address signal, an inverted address signal, and output of the first and the second address extending circuits.
Abstract:
A semiconductor memory device comprises a plurality of reset circuits connected to a data bus pair at different locations. Before each read operation, the reset circuits reset the data bus pair to a predetermined reset voltage. The resetting of the data bus pair is virtually unaffected by the distributed resistances and parasitic capacitances of the data bus pair, since the resetting is carried out at a plurality of locations on the data bus pair.
Abstract:
A semiconductor memory device has fuses coated with a protecting layer. The protecting layer is selectively etched to open windows so as to expose narrow center portions of the fuses. After the opening of the center windows, the fusing operation of the fuses is carried out to open a gap in the center window portion of the fuse material. In a preferred embodiment, another protective layer is then added to fill the gaps in the blown fuses.
Abstract:
A boosting circuit boosts a voltage of a load capacitor which is charged by a specific voltage. The boosting circuit comprises a boosting capacitor one end of which is connected to receive a clock signal, a charging circuit for charging the boosting capacitor, a gate circuit provided between the load capacitor and the other end of the boosting capacitor, and a gate control circuit for opening the gate circuit upon discharging of the charge of the boosting, that is controlled by the clock signal, to the load capacitor and for closing the gate circuit during discharging of the load capacitor. The charging circuit is provided separately from a circuit for supplying the specific voltage. The charges of the boosting capacitor under the control of the clock signal flow through the gate circuit to the load capacitor.