Abstract:
A method of making an SDRAM (synchronous dynamic random access memory) into either a low-speed type or a high-speed type includes the steps of determining an electrical connection of a predetermined electrode of the SDRAM, and providing the predetermined electrode with a voltage level defined by the electrical connection, the voltage level determining whether the SDRAM is made into the low-speed type or the high speed type, wherein the low-speed type can carry out consecutive writing operations at a low clock rate for two addresses having the same row address, and the high-speed type can carry out simultaneous writing operations at a high clock rate for two addresses having the same row address and consecutive column addresses.
Abstract:
A semiconductor memory device includes: a memory cell array including a plurality of word lines; a row pre-decoding unit responsive to a row address signal, outputting a plurality of row pre-decode signals with units of a group having signals of a number corresponding to a combination of each logic level of a predetermined plurality of bits of the row address signal; a row pre-decode wiring for transmitting the plurality of row pre-decode signals; a row main decoder responsive to one signal in each group of the plurality of row pre-decode signals, carrying out a main decoding for selecting one of the plurality of word lines; a pseudo row decoder having substantially same electrical characteristics as the row main decoder, carrying out a simulation of the main decoding in response to the plurality of row pre-decode signals output on row pre-decode wiring; and a word line driver for driving a word line selected by the row main decoder to a predetermined level. An operation of the word line driver is started in response to an activation of the pseudo row decoder, thereby excluding a possibility of an erroneous selection of a word line and preventing an unnecessary prolongation of an access time.
Abstract:
A semiconductor memory device comprises a memory cell array comprising a plurality of memory cells arranged in a matrix arrangement, a sense amplifier, operatively connected to the memory cell array, amplifying a signal read out from one of the memory cells and having a pair of output terminals for outputting a complementary signal, a pair of data buses for transferring the complementary signal, a transfer gate for connecting the pair of output terminals to the pair of data buses responsive to a read operation, a data output buffer connected to the pair of data buses for outputting an output signal, and a reset circuit for resetting the pair of data buses to a predetermined voltage before each read operation responsive to a reset clock signal. The reset circuit comprises a first circuit connected to the pair of data buses for connecting the pair of data buses to a common node responsive to the reset clock signal, and a second circuit connected between the common node and a ground voltage for shifting a potential at the common node to a voltage which is the predetermined voltage greater than the ground voltage.
Abstract:
A synchronous DRAM is disclosed. The DRAM comprises an input buffer, a memory cell array, an output buffer, a signal transfer circuit, first and second latch circuits, and a controller. The input buffer receives an operation control signal supplied externally. The memory cell array has a plurality of memory cells for storing data. The output buffer outputs a data signal read from the memory cells. The signal transfer circuit reads a data signal from one of the memory cells in accordance with the operation control signal from the input buffer, and sends this read data signal to the output buffer. The first and second latch circuits, provided between the input buffer and the output buffer, latch the associated input signals in response to a clock signal. The controller controls the latching operation of the second latch circuit by delaying the clock signal input to the second latch circuit for a period of time from when the first latch circuit receives input from the input buffer to when the read data signal arrives at the second latch circuit.
Abstract:
A dynamic random access memory comprises a CBR refresh detection unit for detecting a commencement of a CBR refreshing cycle and a control signal generation unit for deactivating data output during the CBR cycle, both of the CBR refresh detection unit and the control signal generation unit being supplied with a /RAS signal and a /CAS signal simultaneously, wherein the dynamic random access memory further comprises a CBR refresh control unit supplied with an output of the CBR refresh detection unit and further with an output of the control signal generation unit for producing a control signal during the CBR refreshing cycle such that the control signal is produced in response to the leading edge of the /RAS signal and terminated in response to the trailing edge of the /CAS signal. Thereby, an output buffer circuit is controlled in response to the output of the control signal generation unit and the control signal of the CBR refresh control unit to set the output buffer circuit in the high impedance state during the CBR refreshing cycle.
Abstract:
A semiconductor memory device includes a memory cell array including a plurality of memory cells provided in the form of a matrix along a plurality of word lines and a plurality of pairs of bit lines, a plurality of sense amplifiers operatively connected to the plurality of pairs of bit lines, and a sense amplifier control unit operatively connected to the plurality of sense amplifiers. When one of the plurality of memory cells is selected and data writing is carried out to the selected memory cell, the sense amplifier control unit selectively inactivates only a sense amplifier corresponding to the selected memory cell among the plurality of sense amplifiers. Thus, it is possible to remove useless dissipation of write current in the data write operation to thereby decrease the dissipated power, while realizing a high speed write operation.
Abstract:
A semiconductor integrated circuit is disclosed that operates in synch with a clock signal supplied from an external source, and by a voltage supplied by a power supply. The circuit includes a detection means for detecting that at least one of a frequency of the clock signal and the supply voltage is reduced, and an internal voltage reduction means for lowering an internal voltage of the semiconductor integrated circuit when the detection means detects that at least one of the frequency and the supply voltage is lowered.
Abstract:
A semiconductor device includes a one-shot pulse generating circuit that generates a one-shot pulse having a predetermined pulse width at a rise or fall timing of a first clock signal, a cycle time measuring circuit that measures a cycle time of the first clock signal from the one-shot pulse output from the one-shot pulse generating circuit, an internal clock generating circuit that generates a second clock signal based on the cycle time measured by the cycle time measuring circuit and the one-shot pulse output from the one-shot pulse generating circuit. The second clock signal has a cycle time identical to the first clock signal and has rise or fall timing which is advanced by a specific time than that of the first clock signal, and the specific time is obtained by subtracting the cycle time of the first clock signal from a predetermined time, and a data output circuit that outputs data after a predetermined delay time from the rise or fall timing of the second clock signal.
Abstract:
A semiconductor memory device includes a memory cell array in which a number of sense amplifiers are provided, a plurality of segmented drive lines each connected to a group of sense amplifiers for driving the same, each of the segmented drive lines being formed of first and second drive line segments forming a pair, and a number of trunks for supplying electric power to the segmented drive lines. Each of the trunks includes a first conductor strip extending from a first side of the memory cell array toward a second side for connection to a plurality of the first drive line segments upon crossing the same, and a second conductor strip extending from the second side of the memory cell array toward the first side for connection to a plurality of the second drive line segments upon crossing the same. The first and second conductor strips have distal end parts having a reduced width and a mutually complementary shape, such that the first and second conductor strips are disposed to form a straight strip having a substantially constant width throughout the memory cell array.
Abstract:
In a word line driving circuit coupled to a word line of a memory cell array of a semiconductor memory device, a first transistor has a first terminal receiving an input signal based on a row address signal applied to the semiconductor memory device, a second terminal, and a control terminal receiving a first timing signal. A second transistor having a first terminal receiving a second timing signal, a second terminal connected to the word line, and a control terminal connected to the second terminal of the first transistor. A third transistor has a first terminal connected to the second terminal of the second transistor, a second terminal set at a predetermined potential, and a control terminal receiving a third timing signal. The first transistor has a threshold voltage less than that of at least one of the second and third transistors.