Abstract:
A semiconductor device and methods of fabricating the same are disclosed. The semiconductor device includes a substrate, a fin structure with a fin top surface disposed on the substrate, a source/drain (S/D) region disposed on the fin structure, a gate structure disposed on the fin top surface, and a gate spacer with first and second spacer portions disposed between the gate structure and the S/D region. The first spacer portion extends above the fin top surface and is disposed along a sidewall of the gate structure. The second spacer portion extends below the fin top surface and is disposed along a sidewall of the S/D region.
Abstract:
A method includes following steps. A substrate is etched using a hard mask as an etch mask to form a fin. A bottom anti-reflective coating (BARC) layer is over the fin. A recess is formed in the BARC layer to expose a first portion of the hard mask. A protective coating layer is formed at least on a sidewall of the recess in the BARC layer. A first etching step is performed to remove the first portion of the hard mask to expose a first portion of the fin, while leaving a second portion of the fin covered under the protective coating layer and the BARC layer. A second etching step is performed to lower a top surface of the first portion of the fin to below a top surface of the second portion of the fin.
Abstract:
A dry etching apparatus includes a process chamber, a stage, a gas supply device and a plasma generating device. The stage is in the process chamber and is configured to support a wafer, wherein the wafer has a center region and a periphery region surrounding the center region. The gas supply device is configured to supply a first flow of an etching gas to the center region and supply a second flow of the etching gas to the periphery region. The plasma generating device is configured to generate plasma from the etching gas.
Abstract:
A semiconductor structure and a method of fabricating the semiconductor structure are provided. The semiconductor structure includes a substrate; a metal gate structure on the substrate; and a spacer next to the metal gate structure having a skirting part extending into the metal gate structure and contacting the substrate. The metal gate structure includes a high-k dielectric layer and a metal gate electrode on the high-k dielectric layer.
Abstract:
A fin field effect transistor (FinFET) device structure and method for forming FinFET device structure is provided. The FinFET device structure includes a substrate and a first fin structure and a second fin structure extending above the substrate. The FinFET device structure also includes a first transistor formed on the first fin structure and a second transistor formed on the second fin structure. The FinFET device structure further includes an inter-layer dielectric (ILD) structure formed in an end-to-end gap between the first transistor and the second transistor, and the end-to-end gap has a width in a range from about 20 nm to about 40 nm.
Abstract:
A first semiconductor fin and a second semiconductor fin are disposed over a substrate. The second semiconductor fin and the first semiconductor fin are aligned substantially along a same line and spaced apart from each other. The first semiconductor fin has a first end portion, the second semiconductor fin has a second end portion, and an end sidewall of the first end portion and is spaced apart from an end sidewall of the second end portion. The gate structure extends substantially perpendicularly to the first semiconductor fin. When viewed from above, the gate structure overlaps with the first end portion of the first semiconductor fin. When viewed from above, the end sidewall of the first end portion of the first semiconductor fin facing the end sidewall of the second end portion of the second semiconductor fin has a re-entrant profile.
Abstract:
A method of forming a semiconductor structure includes forming a dummy gate feature over a semiconductive fin; forming a first spacer around the dummy gate feature and a second spacer around the first spacer; replacing the dummy gate feature with a metal gate feature; after replacing the dummy gate feature with the metal gate feature, partially removing the second spacer such that a top of the second spacer is lower than a top of the first spacer; and depositing a capping layer over and in contact with the metal gate feature and the first spacer.
Abstract:
A FinFET device structure and method for forming the same are provided. The FinFET device structure includes a fin structure formed over a substrate and a gate structure traversing over the fin structure. The gate structure includes a gate electrode layer which includes an upper portion above the fin structure and a lower portion below the fin structure, the virtual surface is formed between the upper portion and the lower portion, and the lower portion has a tapered width which is gradually tapered from the virtual interface to a bottom surface of the lower portion.
Abstract:
A device includes a semiconductive fin having source and drain regions and a channel region between the source and drain regions, a gate feature over the channel region of the semiconductive fin, a first spacer around the gate feature, source and drain features respectively in the source and drain regions of the semiconductive fin, an interlayer dielectric layer around the first spacer, and a void between the first spacer and the interlayer dielectric layer and spaced apart from the gate feature and the source and drain features.
Abstract:
A semiconductor device includes an isolation insulating layer disposed over a substrate, a semiconductor fin disposed over the substrate, an upper portion of the semiconductor fin protruding from the isolation insulating layer and a lower portion of the semiconductor fin being embedded in the isolation insulating layer, a gate structure disposed over the upper portion of the semiconductor fin and including a gate dielectric layer and a gate electrode layer, gate sidewall spacers disposed over opposing side faces of the gate structure, and a source/drain epitaxial layer. The upper portion of the semiconductor fin includes a first epitaxial growth enhancement layer made of a semiconductor material different from a remaining part of the semiconductor fin. The first epitaxial growth enhancement layer is in contact with the source/drain epitaxial layer. The gate dielectric layer covers the upper portion of the semiconductor fin including the first epitaxial growth enhancement layer.