Abstract:
Provided are a semiconductor device and a method of fabricating the same. The device may include an active pattern protruding from a substrate, gate structures crossing the active pattern, and a source/drain region provided between adjacent ones of the gate structures. The source/drain region may include a source/drain epitaxial layer in a recessed region, which is formed in the active pattern between the adjacent ones of the gate structures. Further, an impurity diffusion region may be provided in the active pattern to enclose the source/drain epitaxial layer along inner surfaces of the recessed region.
Abstract:
Methods of forming an integrated circuit device are provided. The methods may include forming a gate structure on a substrate, forming a first etch mask on a sidewall of the gate structure, anisotropically etching the substrate using the gate structure and the first etch mask as an etch mask to form a preliminary recess in the substrate, forming a sacrificial layer in the preliminary recess, forming a second etch mask on the first etch mask, etching the sacrificial layer and the substrate beneath the sacrificial layer using the gate structure and the first and second etch masks as an etch mask to form a source/drain recess in the substrate, and forming a source/drain in the source/drain recess. A sidewall of the source/drain recess may be recessed toward the gate structure relative to an outer surface of the second etch mask.
Abstract:
Disclosed is a semiconductor device. The semiconductor device comprises a fin structure on a substrate, device isolation patterns provided on the substrate and disposed on opposite sides of the fin structure, a gate electrode running across the fin structure and the device isolation patterns, a gate dielectric pattern between the gate electrode and the fin structure and between the gate electrode and the device isolation patterns, and a capping layer between the substrate and the device isolation patterns and between the fin structure and the device isolation patterns. The capping layer has a thickness greater than a thickness of the gate dielectric pattern.
Abstract:
A semiconductor device is disclosed. The device includes a substrate including an active region defined by a device isolation layer, a fin pattern protruding from the substrate and extending in a first direction, the fin pattern including a gate fin region and a source/drain fin region, a gate pattern disposed on the gate fin region to extend in a second direction crossing the first direction, and a source/drain portion provided on a sidewall of the source/drain fin region. When measured in the second direction, a width of the source/drain fin region is different from a width in the second direction of the gate fin region.
Abstract:
A semiconductor device is disclosed. The device includes a substrate including an active region defined by a device isolation layer, a fin pattern protruding from the substrate and extending in a first direction, the fin pattern including a gate fin region and a source/drain fin region, a gate pattern disposed on the gate fin region to extend in a second direction crossing the first direction, and a source/drain portion provided on a sidewall of the source/drain fin region. When measured in the second direction, a width of the source/drain fin region is different from a width in the second direction of the gate fin region.
Abstract:
Provided is a semiconductor device which includes a substrate including a first region and a second region different from the first region, a first active pattern provided on the substrate in the first region, a second active pattern provided on the substrate in the second region, a first gate structure crossing over the first active pattern and a second gate structure crossing over the second active pattern, first source/drain regions disposed on the first active pattern at opposite sides of the first gate structure, second source/drain regions disposed on the second active pattern at opposite sides of the second gate structure, and auxiliary spacers disposed in the first region to cover a lower portion of each of the first source/drain regions.
Abstract:
Methods of forming an integrated circuit device are provided. The methods may include forming a gate structure on a substrate, forming a first etch mask on a sidewall of the gate structure, anisotropically etching the substrate using the gate structure and the first etch mask as an etch mask to form a preliminary recess in the substrate, forming a sacrificial layer in the preliminary recess, forming a second etch mask on the first etch mask, etching the sacrificial layer and the substrate beneath the sacrificial layer using the gate structure and the first and second etch masks as an etch mask to form a source/drain recess in the substrate, and forming a source/drain in the source/drain recess. A sidewall of the source/drain recess may be recessed toward the gate structure relative to an outer surface of the second etch mask.
Abstract:
A method of manufacturing a semiconductor device includes forming an active pattern protruding from a semiconductor substrate, forming a dummy gate pattern crossing over the active pattern, forming gate spacers on opposite first and second sidewalls of the dummy gate pattern, removing the dummy gate pattern to form a gate region exposing an upper surface and sidewalls of the active pattern between the gate spacers, recessing the upper surface of the active pattern exposed by the gate region to form a channel recess region, forming a channel pattern in the channel recess region by a selective epitaxial growth (SEG) process, and sequentially forming a gate dielectric layer and a gate electrode covering an upper surface and sidewalls of the channel pattern in the gate region. The channel pattern has a lattice constant different from that of the semiconductor substrate.
Abstract:
The inventive concepts provide methods of manufacturing a semiconductor device. The method includes patterning a substrate to form an active pattern, forming a gate pattern intersecting the active pattern, forming a gate spacer on a sidewall of the gate pattern, forming a growth-inhibiting layer covering an upper region of the gate pattern, and forming source/drain electrodes at opposite first and second sides of the gate pattern.