Abstract:
A method of forming a material layer includes providing a substrate into a reaction chamber, providing a source material onto a substrate, the source material being a precursor of a metal or semimetal having a ligand, providing an ether-based modifier on the substrate, purging an inside of the reaction chamber, and reacting a reaction material with the source material to form the material layer.
Abstract:
A semiconductor device includes a substrate; a first inverter disposed on the substrate and receiving a voltage from any one of a bit line and a complementary bit line; a semiconductor layer disposed on the first inverter; and first and third switch devices disposed on the semiconductor layer and adjusting a threshold voltage of the first inverter to a voltage level of any one of the bit line and the complementary bit line.
Abstract:
Provided are a semiconductor device and a method of manufacturing the semiconductor device. In order to improve reliability by solving a problem of conductivity that may occur when an air spacer structure that may reduce a capacitor coupling phenomenon between a plurality of conductive lines is formed, there are provided a semiconductor device including: a substrate having an active region; a contact plug connected to the active region; a landing pad spacer formed to contact a top surface of the contact plug; a contact conductive layer formed to contact the top surface of the contact plug and formed in a space defined by the landing pad spacer; a metal silicide layer formed on the contact conductive layer; and a landing pad connected to the contact conductive layer in a state in which the metal silicide layer is disposed between the landing pad and the contact conductive layer, and a method of manufacturing the semiconductor device.
Abstract:
Provided is a semiconductor device and a method for fabricating the same. The semiconductor device includes an interlayer insulating layer formed on a semiconductor substrate, a metal contact plug penetrating the interlayer insulating layer, a cylindrical lower electrode formed on the metal contact plug and including a first metal and a trench, a supporter formed in the trench and including a second metal that is different from the first metal, a dielectric layer formed on the lower electrode and the supporter and an upper electrode formed on the dielectric layer.
Abstract:
A semiconductor device includes a substrate, a plurality of gate electrodes extending in a first direction parallel to an upper surface of a substrate on the substrate, and alternately arranged with an interlayer insulating layer in a second direction perpendicular to the upper surface of the substrate, a vertical channel layer on a sidewall of a vertical channel hole extending in the second direction by penetrating through the plurality of gate electrodes and the interlayer insulating layer, and connected to the upper surface of the substrate, and a first gap-fill insulating layer formed in the vertical channel hole and including an outer wall contacting the vertical channel layer and an inner wall opposite the outer wall, wherein a part of the inner wall forms a striation extending in the second direction.
Abstract:
A method of forming a material layer includes providing a substrate into a reaction chamber, providing a source material onto a substrate, the source material being a precursor of a metal or semimetal having a ligand, providing an ether-based modifier on the substrate, purging an inside of the reaction chamber, and reacting a reaction material with the source material to form the material layer.