Abstract:
A semiconductor device has a first substrate and first conductive pillars formed over the first substrate. Second conductive pillars are formed over the first substrate alternating with the first conductive pillars. The second conductive pillars are vertically offset with respect to the first conductive pillars. First BOT interconnect sites are formed over a second substrate. Second BOT interconnect sites are formed over the second substrate alternating with the first interconnect sites. The second interconnect sites are vertically offset with respect to the first interconnect sites. The first substrate is mounted to the second substrate such that the first conductive pillars are aligned with and electrically connected to the first interconnect sites and the second conductive pillars are aligned with and electrically connected to the second interconnect sites. An underfill material is deposited between the first and second substrates. The first substrate can be a flipchip type semiconductor device.
Abstract:
A semiconductor wafer has a plurality of semiconductor die with contact pads for electrical interconnect. An insulating layer is formed over the semiconductor wafer. A bump structure is formed over the contact pads. The bump structure has a buffer layer formed over the insulating layer and contact pad. A portion of the buffer layer is removed to expose the contact pad and an outer portion of the insulating layer. A UBM layer is formed over the buffer layer and contact pad. The UBM layer follows a contour of the buffer layer and contact pad. A ring-shaped conductive pillar is formed over the UBM layer using a patterned photoresist layer filled with electrically conductive material. A conductive barrier layer is formed over the ring-shaped conductive pillar. A bump is formed over the conductive barrier layer. The buffer layer reduces thermal and mechanical stress on the bump and contact pad.
Abstract:
A semiconductor wafer has a plurality of semiconductor die with contact pads for electrical interconnect. An insulating layer is formed over the semiconductor wafer. A bump structure is formed over the contact pads. The bump structure has a buffer layer formed over the insulating layer and contact pad. A portion of the buffer layer is removed to expose the contact pad and an outer portion of the insulating layer. A UBM layer is formed over the buffer layer and contact pad. The UBM layer follows a contour of the buffer layer and contact pad. A ring-shaped conductive pillar is formed over the UBM layer using a patterned photoresist layer filled with electrically conductive material. A conductive barrier layer is formed over the ring-shaped conductive pillar. A bump is formed over the conductive barrier layer. The buffer layer reduces thermal and mechanical stress on the bump and contact pad.
Abstract:
A semiconductor device has a flipchip type semiconductor die with contact pads and substrate with contact pads. A flux material is deposited over the contact pads of the semiconductor die and contact pads of the substrate. A solder tape formed as a continuous body of solder material with a plurality of recesses is disposed between the contact pads of the semiconductor die and substrate. The solder tape is brought to a liquidus state to separate a portion of the solder tape outside a footprint of the contact pads of the semiconductor die and substrate under surface tension and coalesce the solder material as an electrical interconnect substantially within the footprint of the contact pads of the semiconductor die and substrate. The contact pads on the semiconductor die and substrate can be formed with an extension or recess to increase surface area of the contact pads.
Abstract:
A semiconductor device has a first substrate and first conductive pillars formed over the first substrate. Second conductive pillars are formed over the first substrate alternating with the first conductive pillars. The second conductive pillars are vertically offset with respect to the first conductive pillars. First BOT interconnect sites are formed over a second substrate. Second BOT interconnect sites are formed over the second substrate alternating with the first interconnect sites. The second interconnect sites are vertically offset with respect to the first interconnect sites. The first substrate is mounted to the second substrate such that the first conductive pillars are aligned with and electrically connected to the first interconnect sites and the second conductive pillars are aligned with and electrically connected to the second interconnect sites. An underfill material is deposited between the first and second substrates. The first substrate can be a flipchip type semiconductor device.
Abstract:
A semiconductor device has a substrate and first conductive pads formed over the substrate. An interconnect surface area of the first conductive pads is expanded by forming a plurality of recesses into the first conductive pads. The recesses can be an arrangement of concentric rings, arrangement of circular recesses, or arrangement of parallel linear trenches. Alternatively, the interconnect surface area of the first conductive pads is expanded by forming a second conductive pad over the first conductive pad. A semiconductor die has a plurality of interconnect structures formed over a surface of the semiconductor die. The semiconductor die is mounted to the substrate with the interconnect structures contacting the expanded interconnect surface area of the first conductive pads to increase bonding strength of the interconnect structure to the first conductive pads. A mold underfill material is deposited between the semiconductor die and substrate.
Abstract:
A semiconductor device has a substrate and first conductive pads formed over the substrate. An interconnect surface area of the first conductive pads is expanded by forming a plurality of recesses into the first conductive pads. The recesses can be an arrangement of concentric rings, arrangement of circular recesses, or arrangement of parallel linear trenches. Alternatively, the interconnect surface area of the first conductive pads is expanded by forming a second conductive pad over the first conductive pad. A semiconductor die has a plurality of interconnect structures formed over a surface of the semiconductor die. The semiconductor die is mounted to the substrate with the interconnect structures contacting the expanded interconnect surface area of the first conductive pads to increase bonding strength of the interconnect structure to the first conductive pads. A mold underfill material is deposited between the semiconductor die and substrate.
Abstract:
A semiconductor device has a substrate and first conductive pads formed over the substrate. An interconnect surface area of the first conductive pads is expanded by forming a plurality of recesses into the first conductive pads. The recesses can be an arrangement of concentric rings, arrangement of circular recesses, or arrangement of parallel linear trenches. Alternatively, the interconnect surface area of the first conductive pads is expanded by forming a second conductive pad over the first conductive pad. A semiconductor die has a plurality of interconnect structures formed over a surface of the semiconductor die. The semiconductor die is mounted to the substrate with the interconnect structures contacting the expanded interconnect surface area of the first conductive pads to increase bonding strength of the interconnect structure to the first conductive pads. A mold underfill material is deposited between the semiconductor die and substrate.
Abstract:
A semiconductor device has a substrate and first conductive pads formed over the substrate. An interconnect surface area of the first conductive pads is expanded by forming a plurality of recesses into the first conductive pads. The recesses can be an arrangement of concentric rings, arrangement of circular recesses, or arrangement of parallel linear trenches. Alternatively, the interconnect surface area of the first conductive pads is expanded by forming a second conductive pad over the first conductive pad. A semiconductor die has a plurality of interconnect structures formed over a surface of the semiconductor die. The semiconductor die is mounted to the substrate with the interconnect structures contacting the expanded interconnect surface area of the first conductive pads to increase bonding strength of the interconnect structure to the first conductive pads. A mold underfill material is deposited between the semiconductor die and substrate.