Abstract:
A semiconductor wafer has a plurality of semiconductor die with contact pads for electrical interconnect. An insulating layer is formed over the semiconductor wafer. A bump structure is formed over the contact pads. The bump structure has a buffer layer formed over the insulating layer and contact pad. A portion of the buffer layer is removed to expose the contact pad and an outer portion of the insulating layer. A UBM layer is formed over the buffer layer and contact pad. The UBM layer follows a contour of the buffer layer and contact pad. A ring-shaped conductive pillar is formed over the UBM layer using a patterned photoresist layer filled with electrically conductive material. A conductive barrier layer is formed over the ring-shaped conductive pillar. A bump is formed over the conductive barrier layer. The buffer layer reduces thermal and mechanical stress on the bump and contact pad.
Abstract:
A semiconductor device has a first conductive layer formed over a first substrate. A second conductive layer is formed over a second substrate. A first semiconductor die is mounted to the first substrate and electrically connected to the first conductive layer. A second semiconductor die is mounted to the second substrate and electrically connected to the second conductive layer. The first semiconductor die is mounted over the second semiconductor die. An encapsulant is deposited over the first and second semiconductor die and the first and second substrates. A conductive interconnect structure is formed through the encapsulant to electrically connect the first and second semiconductor die to the second surface of the semiconductor device. Forming the conductive interconnect structure includes forming a plurality of conductive vias through the encapsulant and the first substrate outside a footprint of the first and second semiconductor die.
Abstract:
A semiconductor device has a first conductive layer formed over a first substrate. A second conductive layer is formed over a second substrate. A first semiconductor die is mounted to the first substrate and electrically connected to the first conductive layer. A second semiconductor die is mounted to the second substrate and electrically connected to the second conductive layer. The first semiconductor die is mounted over the second semiconductor die. An encapsulant is deposited over the first and second semiconductor die and the first and second substrates. A conductive interconnect structure is formed through the encapsulant to electrically connect the first and second semiconductor die to the second surface of the semiconductor device. Forming the conductive interconnect structure includes forming a plurality of conductive vias through the encapsulant and the first substrate outside a footprint of the first and second semiconductor die.
Abstract:
A semiconductor wafer has a plurality of semiconductor die with contact pads for electrical interconnect. An insulating layer is formed over the semiconductor wafer. A bump structure is formed over the contact pads. The bump structure has a buffer layer formed over the insulating layer and contact pad. A portion of the buffer layer is removed to expose the contact pad and an outer portion of the insulating layer. A UBM layer is formed over the buffer layer and contact pad. The UBM layer follows a contour of the buffer layer and contact pad. A ring-shaped conductive pillar is formed over the UBM layer using a patterned photoresist layer filled with electrically conductive material. A conductive barrier layer is formed over the ring-shaped conductive pillar. A bump is formed over the conductive barrier layer. The buffer layer reduces thermal and mechanical stress on the bump and contact pad.