Abstract:
Certain aspects provide a circuit for in-memory computation. The circuit generally includes a first memory cell, and a first computation circuit. The first computation circuit may include a first switch having a control input coupled to an output of the first memory cell, a second switch coupled between a node of the first computation circuit and the first switch, a control input of the second switch being coupled to a discharge word-line (DCWL), a capacitive element coupled between the node and a reference potential node, a third switch coupled between the node and a read bit-line (RBL), and a fourth switch coupled between the node and an activation (ACT) line.
Abstract:
A memory circuit that includes a memory bitcell. The memory bitcell includes a six-transistor circuit configuration, a first transistor coupled to the six-transistor circuit configuration, a second transistor coupled to the first transistor, a third transistor coupled to the second transistor, and a capacitor coupled to the second transistor and the third transistor. The memory circuit includes a read word line coupled to the third transistor, a read bit line coupled to the third transistor, and an activation line coupled to the second transistor. The memory bitcell may be configured to operate as a NAND memory bitcell. The memory bitcell may be configured to operate as a NOR memory bitcell.
Abstract:
Dynamically controlling voltage for access (i.e., read and/or write) operations to magneto-resistive random access memory (MRAM) bit cells to account for process variations is disclosed. An MRAM bit cell process variation measurement circuit (PVMC) is configured to measure process variations in MTJs that affect MTJ resistance, which can change write current at a given fixed supply voltage applied to an MRAM bit cell. The MRAM bit cell PVMC may also be configured to measure process variations in logic circuits representing process variations in access transistors employed in MRAM bit cells. These measured process variations in MTJs and/or logic circuits are used to dynamically determine a supply voltage for access operations to MRAM.
Abstract:
Dynamically controlling voltage for access (i.e., read and/or write) operations to magneto-resistive random access memory (MRAM) bit cells to account for process variations is disclosed. An MRAM bit cell process variation measurement circuit (PVMC) is configured to measure process variations in MTJs that affect MTJ resistance, which can change write current at a given fixed supply voltage applied to an MRAM bit cell. The MRAM bit cell PVMC may also be configured to measure process variations in logic circuits representing process variations in access transistors employed in MRAM bit cells. These measured process variations in MTJs and/or logic circuits are used to dynamically determine a supply voltage for access operations to MRAM.
Abstract:
Magnetic Tunnel Junction (MTJ) devices particularly suited for efficient spin-torque-transfer (STT) magnetic random access memory (MRAM) (STT MRAM) are disclosed. In one aspect, a MTJ structure with a reduced thickness first pinned layer provided below a tunnel magneto-resistance (TMR) barrier layer is provided. The first pinned layer provided below the TMR bather layer includes one pinned layer magnetized in only one magnetic orientation. In another aspect, a second pinned layer and a spacer layer are provided above a free layer and the TMR barrier layer in the MTJ. The second pinned layer is magnetized in a magnetic orientation that is anti-parallel to that of the first pinned layer. In yet another aspect, a giant magneto-resistance (GMR) spacer layer is provided as the spacer layer between the second pinned layer and the free layer in the MTJ.
Abstract:
A memory cell includes a magnetic tunnel junction (MTJ) structure that includes a free layer coupled to a bit line and a pinned layer. A magnetic moment of the free layer is substantially parallel to a magnetic moment of the pinned layer in a first state and substantially antiparallel to the magnetic moment of the pinned layer in a second state. The pinned layer has a physical dimension to produce an offset magnetic field corresponding to a first switching current of the MTJ structure to enable switching between the first state and the second state when a first voltage is applied from the bit line to a source line coupled to an access transistor and a second switching current to enable switching between the second state and the first state when the first voltage is applied from the source line to the bit line.
Abstract:
An apparatus includes a structure that includes a bottom cap layer surrounding a metal pad. The apparatus also includes a magnetic tunnel junction (MTJ) device that includes a bottom electrode coupled to the structure. The MTJ device includes magnetic tunnel junction layers, a top electrode, and a logic cap layer. The MTJ device is offset with respect to the metal pad.
Abstract:
A method includes applying a programming voltage to a drain of an access transistor, where a source of the access transistor is coupled to a drain region of a one-time programmable (OTP) device. The method also includes applying a first voltage to a gate of the OTP device and a second voltage to a terminal of the OTP device to bias a channel region of the OTP device, where the first voltage and the second voltage are substantially equal.
Abstract:
A probabilistic programming current is injected into a cluster of bi-stable probabilistic switching elements, the probabilistic programming current having parameters set to result in a less than unity probability of any given bi-stable switching element switching, and a resistance of the cluster of bi-stable switching elements is detected. The probabilistic programming current is injected and the resistance of the cluster state detected until a termination condition is met. Optionally the termination condition is detecting the resistance of the cluster of bi-stable switching elements at a value representing a multi-bit data.
Abstract:
One feature pertains to a method of implementing a physically unclonable function (PUF). The method includes exposing an array of magnetoresistive random access memory (MRAM) cells to an orthogonal external magnetic field. The MRAM cells are each configured to represent one of a first logical state and a second logical state, and the orthogonal external magnetic field is oriented in an orthogonal direction to an easy axis of a free layer of the MRAM cells to place the MRAM cells in a neutral logical state that is not the first logical state or the second logical state. The method further includes removing the orthogonal external magnetic field to place each of the MRAM cells of the array randomly in either the first logical state or the second logical state.