Abstract:
Magnetic Tunnel Junction (MTJ) devices particularly suited for efficient spin-torque-transfer (STT) magnetic random access memory (MRAM) (STT MRAM) are disclosed. In one aspect, a MTJ structure with a reduced thickness first pinned layer provided below a tunnel magneto-resistance (TMR) barrier layer is provided. The first pinned layer provided below the TMR bather layer includes one pinned layer magnetized in only one magnetic orientation. In another aspect, a second pinned layer and a spacer layer are provided above a free layer and the TMR barrier layer in the MTJ. The second pinned layer is magnetized in a magnetic orientation that is anti-parallel to that of the first pinned layer. In yet another aspect, a giant magneto-resistance (GMR) spacer layer is provided as the spacer layer between the second pinned layer and the free layer in the MTJ.
Abstract:
Magnetic tunnel junction (MTJ) devices with a heterogeneous free layer structure particularly suited for efficient spin-torque-transfer (STT) magnetic random access memory (MRAM) (STT MRAM) are disclosed. In one aspect, a MTJ structure with a reduced thickness first pinned layer section provided below a first tunnel magneto-resistance (TMR) barrier layer is provided. The first pinned layer section includes one pinned layer magnetized in one magnetic orientation. In another aspect, a second pinned layer section and a second TMR barrier layer are provided above a free layer section and above the first TMR barrier layer in the MTJ. The second pinned layer is magnetized in a magnetic orientation that is anti-parallel (AP) to that of the first pinned layer section. In yet another aspect, the free layer comprises first and second heterogeneous layers separated by an anti-ferromagnetic coupling spacer, the first and second heterogeneous layers differing in their magnetic anisotropy.
Abstract:
A semiconductor device includes a first magnetic tunnel junction (MTJ) device, a second MTJ device, and a top electrode. The first MTJ device includes a barrier layer. The second MTJ device includes the barrier layer. The top electrode is coupled to the first MTJ device and the second MTJ device.
Abstract:
An apparatus includes a perpendicular magnetic anisotropy magnetic tunnel junction (pMTJ) device. The pMTJ device includes a storage layer and a reference layer. The reference layer includes a portion configured to produce a ferrimagnetic effect. The portion includes a first layer, a second layer, and a third layer. The second layer is configured to antiferromagnetically (AF) couple the first layer and the third layer during operation of the pMTJ device.
Abstract:
A material stack of a synthetic anti-ferromagnetic (SAF) reference layer of a perpendicular magnetic tunnel junction (MTJ) may include an SAF coupling layer. The material stack may also include and an amorphous spacer layer on the SAF coupling layer. The amorphous spacer layer may include an alloy or multilayer of tantalum and cobalt or tantalum and iron or cobalt and iron and tantalum. The amorphous spacer layer may also include a treated surface of the SAF coupling layer.
Abstract:
A semiconductor device includes a first magnetic tunnel junction (MTJ) device, a second MTJ device, and a top electrode. The first MTJ device includes a barrier layer. The second MTJ device includes the barrier layer. The top electrode is coupled to the first MTJ device and the second MTJ device.
Abstract:
Magnetic tunnel junction (MTJ) devices with a heterogeneous free layer structure particularly suited for efficient spin-torque-transfer (STT) magnetic random access memory (MRAM) (STT MRAM) are disclosed. In one aspect, a MTJ structure with a reduced thickness first pinned layer section provided below a first tunnel magneto-resistance (TMR) barrier layer is provided. The first pinned layer section includes one pinned layer magnetized in one magnetic orientation. In another aspect, a second pinned layer section and a second TMR barrier layer are provided above a free layer section and above the first TMR barrier layer in the MTJ. The second pinned layer is magnetized in a magnetic orientation that is anti-parallel (AP) to that of the first pinned layer section. In yet another aspect, the free layer comprises first and second heterogeneous layers separated by an anti-ferromagnetic coupling spacer, the first and second heterogeneous layers differing in their magnetic anisotropy.
Abstract:
An apparatus includes a perpendicular magnetic anisotropy magnetic tunnel junction (pMTJ) device. The pMTJ device includes a storage layer and a reference layer. The reference layer includes a portion configured to produce a ferrimagnetic effect. The portion includes a first layer, a second layer, and a third layer. The second layer is configured to antiferromagnetically (AF) couple the first layer and the third layer during operation of the pMTJ device.
Abstract:
A magnetic tunnel junction (MTJ) device includes a pinned layer, a tunnel barrier layer on the pinned layer, and a free layer on the tunnel barrier layer. The MTJ device also includes a perpendicular magnetic anisotropic (PMA) enhancement layer on the free layer, a capping layer on the PMA enhancement layer, and a conductive path electrically shorting the capping layer, the PMA enhancement layer and the free layer. A method of fabricating a perpendicular magnetic tunnel junction (pMTJ) device includes forming a capping layer, a perpendicular magnetic anisotropic (PMA) enhancement layer and a free layer. The method also includes forming a conductive layer to short the capping layer, the PMA enhancement layer and the free layer.
Abstract:
A method for fabricating a perpendicular magnetic tunnel junction (pMTJ) device includes growing a seed layer on a first electrode of the pMTJ device. The seed layer has a uniform predetermined crystal orientation along a growth axis. The method also includes planarizing the seed layer while maintaining the uniform predetermined crystal orientation of the seed layer.