Abstract:
A magnetic memory includes: first to fourth wirings; first and second terminals; a first conductive layer including first to third regions, the second region being between the first region and the third region, the first region being electrically connected to the first terminal, and the third region being electrically connected to the second terminal; a first magnetoresistive element including a first and a second magnetic layer, and a first nonmagnetic layer disposed between the first and the magnetic layer; a first transistor including a third terminal electrically connected to the first magnetic layer, a fourth terminal electrically connected to the third wiring, and a first control terminal electrically connected to the first wiring; and a second transistor including a fifth terminal electrically connected to the first terminal, a sixth terminal electrically connected to the second wiring, and a second control terminal electrically connected to the first wiring.
Abstract:
A data generation apparatus according to an embodiment comprises a memory space including a plurality of memory cells, each including a resistance change element, a first circuit configured to supply the memory cells included in a first space that represents part of the memory space with a current or a voltage that causes a dielectric breakdown to occur in the resistance change element, a second circuit configured to output a value read from the memory cells included in the first space, and an ID generation circuit configured to generate an ID using the value output from the second circuit.
Abstract:
According to one embodiment, a nonvolatile semiconductor memory includes a resistance-change element having first and second terminals, a transistor having third and fourth terminals and a control terminal, the third terminal being electrically connected to the second terminal, and a driver electrically connected to the first and fourth terminals, applying one of a first potential and a second potential to the first terminal and the other of the first and second potentials to the fourth terminal in writing, and applying one of the first and second potentials to the first terminal and the other of the first and second potentials to the fourth terminal in reading.
Abstract:
A cache memory includes cache memory circuitry that is accessible per cache line and a redundant-code storage that stores one or more numbers of first redundant codes to be used for error correction of cache line data stored in the cache memory circuitry per cache line and one or more numbers of second redundant codes to be used for error detection of a part of the cache line data.
Abstract:
According to one embodiment, a nonvolatile memory includes a first conductive line including a first portion, a second portion, a third portion between the first and second portions, and a fourth portion between the second and third portions, a first storage element including a first terminal connected to the third portion and a second terminal, a first transistor including a third terminal connected to the second terminal, a fourth terminal, and a first electrode controlling a first current path, a second storage element including a fifth terminal connected to the fourth portion and a sixth terminal, and a second transistor including a seventh terminal connected to the sixth terminal, an eighth terminal, and a second electrode controlling a second current path.
Abstract:
A cache memory system has a first cache memory, a second cache memory which comprises a nonvolatile memory capable of generating a plurality of regions having different access speeds and has access priority lower than the first cache memory, and a cache controller which carries out a control where data to be stored in the second cache memory is sorted to the plurality of regions and stored thereto in accordance with access conditions with respect to the first cache memory.
Abstract:
A cache memory has a data cache to store data per cache line, a tag to store address information of the data to be stored in the data cache, a cache controller to determine whether an address by an access request of a processor meets the address information stored in the tag and to control access to the data cache and the tag, and a write period controller to control a period required for writing data in the data cache based on at least one of an occurrence frequency of read errors to data stored in the data cache and a degree of reduction in performance of the processor due to delay in reading the data stored in the data cache.
Abstract:
A data generating device according to embodiments comprises a ring oscillator, a flip-flop circuit and a generator. The flip-flop circuit includes a first terminal and a second terminal to each of which the ring oscillator output is inputted, and that determines a value of output of the ring oscillator. The generator generates an ID for authentication based on one or more values determined by the flip-flop circuit at the time when the ring oscillator is turned on.
Abstract:
A storage device according to an embodiment includes: first and second magnetic elements each including: a reference layer connected to a third terminal; a first magnetic layer including first through third magnetic regions; a nonmagnetic layer; a second magnetic layer connected to a first terminal and the first magnetic region; and a third magnetic layer connected to a second terminal and the third magnetic region; a first inverter including a p-channel first transistor, an n-channel second transistor, a first input terminal connected to the second terminal of the second magnetic element, and a first output terminal connected to the first terminal of the first magnetic element; and a second inverter including a p-channel third transistor, an n-channel fourth transistor, a second input terminal connected to the second terminal of the first magnetic element, and a second output terminal connected to the first terminal of the second magnetic element.
Abstract:
According to one embodiment, a semiconductor memory includes a first block array including first to n-th blocks (n is a natural number of 2 or more) arranged in a first direction, each of the first to n-th blocks including a first memory cell, a first conductive line extending in the first direction, and shared by the first to n-th blocks, first to n-th current amplifiers corresponding to the first to n-th blocks, the i-th current amplifier (i is one of 1 to n) including an input terminal and an output terminal, the input terminal of the i-th current amplifier being electrically connected to the first memory cell in the i-th block, the output terminal of the i-th current amplifier being electrically connected to the first conductive line, and a sense amplifier electrically connected to the first conductive line.