Abstract:
Different portions of a continuous loop of semiconductor material are electrically isolated from one another. In some embodiments, the end of the loop is electrically isolated from mid-portions of the loop. In some embodiments, loops of semiconductor material, having two legs connected together at their ends, are formed by a pitch multiplication process in which loops of spacers are formed on sidewalls of mandrels. The mandrels are removed and a block of masking material is overlaid on at least one end of the spacer loops. In some embodiments, the blocks of masking material overlay each end of the spacer loops. The pattern defined by the spacers and the blocks are transferred to a layer of semiconductor material. The blocks electrically connect together all the loops. A select gate is formed along each leg of the loops. The blocks serve as sources/drains. The select gates are biased in the off state to prevent current flow from the mid-portion of the loop's legs to the blocks, thereby electrically isolating the mid-portions from the ends of the loops and also electrically isolating different legs of a loop from each other.
Abstract:
A computer program storage product includes instructions for forming a fin field-effect-transistor. The instructions are configured to perform a method. The method includes implanting a dopant into an exposed portion of a semiconductor substrate within a cavity. The cavity is formed in a dielectric layer on the semiconductor substrate. The cavity exposes the portion of the semiconductor substrate within the cavity. A semiconductor layer is epitaxially grown within the cavity atop the dopant implanted exposed portion of the semiconductor substrate. A height of the cavity defines a height of the epitaxially grown semiconductor.
Abstract:
The embodiments of mechanisms for forming source/drain (S/D) regions of field effect transistors (FETs) descried enable forming an epitaxially grown silicon-containing material without using GeH4 in an etch gas mixture of an etch process for a cyclic deposition/etch (CDE) process. The etch process is performed at a temperature different form the deposition process to make the etch gas more efficient. As a result, the etch time is reduced and the throughput is increased.
Abstract:
A device includes an epitaxially grown crystalline material within an area confined by an insulator. A surface of the crystalline material has a reduced roughness. One example includes obtaining a surface with reduced roughness by creating process parameters which result in the dominant growth component of the crystal to be supplied laterally from side walls of the insulator. In a preferred embodiment, the area confined by the insulator is an opening in the insulator having an aspect ratio sufficient to trap defects using an ART technique.
Abstract:
The present invention proposes variations of the laser separation method allowing separating homoepitaxial films from the substrates made from the same crystalline material as the epitaxial film This new method of laser separation is based on using the selective doping of the substrate and epitaxial film with fine donor and acceptor impurities. In selective doping, concentration of free carries in the epitaxial film and substrate may essentially differ and this can lead to strong difference between the light absorption factors in the infrared region near the residual beams region where free carriers and phonon-plasmon interaction of the optical phonons with free carriers make an essential contribution to infrared absorption of the optical phonons. With the appropriate selection of the doping levels and frequency of infrared laser radiation it is possible to achieve that laser radiation is absorbed in general in the region of strong doping near the interface substrate-homoepitaxial film When scanning the interface substrate-homoepitaxial film with the focused laser beam of sufficient power, thermal decomposition of the semiconductor crystal takes place with subsequent separation of the homoepitaxial film The advantage of the proposed variations of the method for laser separation of epitaxial films in comparison with the known ones is in that it allows to separate homoepitaxial films from the substrates, i.e., homoepitaxial films having the same width of the forbidden gap as the initial semi-conductor substrate has. The proposed variations of the method can be used for separation of the epitaxial films. Besides, the proposed method allows using the high-effective and inexpensive infrared gas silicon dioxide CO2 or silicon oxide CO lasers for separation of the epitaxial films.
Abstract:
A patterned article includes a substrate support having planar substrate surface portions including a substrate material having a substrate refractive index. A patterned surface is on the substrate support including a plurality of features lateral to the planar substrate surface portions protruding above a height of the planar substrate surface portions. At least a top surface of the plurality of features include an epi-blocking layer including at least one of (i) a non-single crystal material having a refractive index lower as compared to the substrate refractive index and (ii) a reflecting metal or a metal alloy (reflecting material). The epi-blocking layer is not on the planar substrate surface portions.
Abstract:
A process fabricates a fin field-effect-transistor by implanting a dopant into an exposed portion of a semiconductor substrate within a cavity. The cavity is formed in a dielectric layer on the semiconductor substrate. The cavity exposes the portion of the semiconductor substrate within the cavity. A semiconductor layer is epitaxially grown within the cavity atop the dopant implanted exposed portion of the semiconductor substrate. A height of the cavity defines a height of the epitaxially grown semiconductor.
Abstract:
A semiconductor device and a fabrication method thereof are provided. The semiconductor device includes a first type semiconductor layer doped with an N type ion, a second type semiconductor layer formed over the first type semiconductor layer, and a silicon germanium (SiGe) layer doped with a P type ion formed over the second type semiconductor layer.
Abstract:
Different portions of a continuous loop of semiconductor material are electrically isolated from one another. In some embodiments, the end of the loop is electrically isolated from mid-portions of the loop. In some embodiments, loops of semiconductor material, having two legs connected together at their ends, are formed by a pitch multiplication process in which loops of spacers are formed on sidewalls of mandrels. The mandrels are removed and a block of masking material is overlaid on at least one end of the spacer loops. In some embodiments, the blocks of masking material overlay each end of the spacer loops. The pattern defined by the spacers and the blocks are transferred to a layer of semiconductor material. The blocks electrically connect together all the loops. A select gate is formed along each leg of the loops. The blocks serve as sources/drains. The select gates are biased in the off state to prevent current flow from the mid-portion of the loop's legs to the blocks, thereby electrically isolating the mid-portions from the ends of the loops and also electrically isolating different legs of a loop from each other.
Abstract:
A fin field-effect-transistor fabricated by forming a dummy fin structure on a semiconductor substrate. A dielectric layer is formed on the semiconductor substrate. The dielectric layer surrounds the dummy fin structure. The dummy fin structure is removed to form a cavity within the dielectric layer. The cavity exposes a portion of the semiconductor substrate thereby forming an exposed portion of the semiconductor substrate within the cavity. A dopant is implanted into the exposed portion of the semiconductor substrate within the cavity thereby creating a dopant implanted exposed portion of the semiconductor substrate within the cavity. A semiconductor layer is epitaxially grown within the cavity atop the dopant implanted exposed portion of the semiconductor substrate.